AFRL-IF-RS-TR-1998-147
Final Technical Report
July 1998

MLS DIRECTORY SERVER PROTOTYPE

Infosystems Technology, Inc.

Charles J. Testa

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

DTIC QUALITY LiiCFLCTED 1

6zl 01603661

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-147 has been reviewed and is approved for publication.

Ty 3 g

APPROVED:
MARY L. DENZ
Project Engineer
FOR THE DIRECTOR: W ’
WARREN H. DEBANY, Jr., Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Rd, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE OMB Mo, 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arfington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188}, Washington, D 20503.

1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Jul 98 Sep 95 - Sep 97
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
MLS DIRECTORY SERVER PROTOTYPE C - F30602-95-C-0298
PE - 33140F
6. AUTHOR(S) PR -7820
Charles J. Testa TA -04
WU -30
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Infosystems Technology, Inc.
6411 Ivy Lane
Greenbelt, MD 20770

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES} 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL/IFGB
525 Brooks Rd. AFRL-IF-RS-TR-1998-147

Rome, NY 13441-4505

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Mary L. Denz/IFGB/315-330-2030

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This is the final report for the congressional funded Multilevel Secure (MLS) Directory Server Prototype program.
Infosystems Technology, Inc., Wang Federal, Inc., J.G. Van Dyke & Associates, Inc., and Datacraft Limited have been
working on the design and development of a proof-of-concept MLS Directory Server for the Air Force Research Laboratory,
Rome Research Site. This document summarizes the work performed and design features of this effort, and some of the
technical issues that prevented the successful integration of a working MLS Directory Server within the budgetary constraints
of this contract. Despite non-completion, the technical knowledge gained from this prototype will be valuable when it comes
time to develop a fully functional MLS Directory server based on the X.500 International Standards.

14 SUBJECT TERMS 15. NUMBER OF PAGES
Computer Security, Trusted Database Management System, X.500, Trusted Computer Base,
Multilevel Secure Directory System 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (gRev. 2-89} (EG)
Prescribed hy ANSI Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 94

TABLE OF CONTENTS

Page
1 Introduction 3
2 WorkPerformed 4
21 TasksCompletedc.oviniie 4
2.2 Tasks Undertaken But NotCompleted 5
23 TasksNotUndertakencovuinn i, 5
2.4 Details Pertaining to Work Performed 5
2.4.1 Strong Authentication............ ..ot 5
242 X500 ProductSelection 6
2.4.3 Portof Trusted RUBIXto XTS-300oovronn 7
3 Proof-of-Concept Deliverable 10
4 Conclusion 10
Appendix A — MLS X.500 Directory Server Functional Specification. 11
Appendix B — MLS X.500 Directory Server System Design Document....... 55
Appendix C — MLS X.500 Initial Directory Schema.oveeeeen... 88
Appendix D — MLS X.500 Directory Test Plan and Demonstration Scenarios 99
Appendix E — Datacraft DSA/Trusted RUBIX File Listings v.vvvevvnnnnnn.. .106

1/2

1 Introduction

Infosystems Technology, Inc. (ITl), Wang Federal, Inc, J.G. Van Dyke & Associates, Inc.
and Datacraft Limited have been working on the design and development of a
proof-of-concept Multi-level Secure (MLS) Directory Server for the U.S. Air Force's Rome
Laboratories. This document summarizes the work performed and design features of this
effort, and some of the technical issues that prevented the successful integration of a
working MLS Directory Server within the budgetary constraints of this contract.

Despite non-completion, the technical knowledge gained from this prototype will be
valuable when it comes time to develop a fully functional MLS Directory System based
on the X.500 Interational Standards, e.g., for the NSA MISSI| program. The need for
X.500 directories within DoD has grown tremendously with the implementation of the
Defense Message System and other large networking initiatives. X.500 provides a
global repository for storage of virtually any type of information. As information is
gathered and maintained in support of the DoD it is rapidly becoming apparent that this
information needs to be protected.

This proof-of-concept was intended to be the first step in providing protection of X.500
information. It was to use the XTS-300™ B3-evaluated Trusted Computer Base
developed by Wang Government Services as its platform system, the not-yet-evaluated
Trusted RUBIX™ relational database management system developed by Infosystems
Technology, Inc., the J.G. Van Dyke & Associates, Inc. FORTEZZA® strong
authentication software, and the Datacraft Limited X.500 Directory System Agent (DSA)
to provide the highest available security mechanisms.

The objective of the proof-of-concept was to provide a MLS Directory Server that would
support standard X.500-1993 DSA functionality and protocols, and which would appear
to standard X.500 Directory User Agents, Administrative Directory User Agents, and
Directory System Agents like any other standard DSA. The difference was that the
MLS Directory Server would be able to store information at several classification levels
and/or multiple compartments/categories. In this way, the MLS Directory Server would
have maintained directory information at its true classification level, enabling it to
eliminate the multiplicity of system-high directories which often contain large amounts
of replicated lower-level information that is necessarily overclassified in system-high
mode.

The security policy of the MLS Directory Server — enforced by the Trusted Computing
Bases (TCBs) of the B3 evaluated XTS-300 and the Trusted RUBIX RDBMS (designed
to be "B3 capable") — would have ensured that each external X.500 system could
access only those levels in the MLS Directory information base dominated by the
requestor's own authorization level. In this way, a user's directory entry would have
been able to contain data at several classification levels, yet be stored and
administered on a single Directory Server. The MLS Directory Server would have
réstricted lookups and updates of that directory entry to only those portions of the
entries which the requestor was allowed to access.

2 Work Performed

The following sections describe the work performed in this project, including tasks
successfully completed, those that were undertaken but not completed, and those
originally planned but not undertaken.

2.1 Tasks Completed

The following tasks were successfully completed:

1) Defined and delivered requirements specification (see Appendix A), design (see
Appendix B), and management plan for the proof-of-concept.

2) Performed market survey of X.500 products to determine which DSA would best
meet the requirements of this project.

3) Negotiated pricing and support for DSA software, including source code licence.

4) Defined and delivered initial Directory Schema to be supported (see Appendix C).

5) Defined initial Test Plan and Demonstration Scenarios (see Appendix D).

6) Tested DSA communications capabilities with other X.500 DSA and DUA
products (from Nexor, ISOCOR, CDC) to ensure interoperability and compliance

to the X.500 standards.

7) Ported X.500 DSA, using remote database pass through only, to XTS-300
running STOP Version 4.3.

8) On Sun SPARC system, tested full DSA functionality, including relational
database interface, using the Ingres RDBMS.

9) On Sun SPARC system, tested full DSA functionality, including relational
database interface, using the Trusted RUBIX RDBMS.

10) Ported Trusted RUBIX to XTS-300, running STOP 4.4.

2.2 Tasks Undertaken But Not Completed

1)

Integrated VDA FORTEZZA® strong authentication software with Datacraft
X.500 DUA and DSA. Not completed due to shortcomings in version of Datacraft
code available to us on this project. Unable, due to budgetary constraints, to
upgrade to new Datacraft release, wherein Datacraft took Van Dyke's code and
integrated it with their standard DSA product; this upgrade would have enabled
demonstration of strong authentication interface.

Porting of Datacraft DSA, using local database capability, to XTS-300 running
STOP 4.4. Apparent memory allocation errors made it impossible to complete
testing of the DSA's relational database interface modules. Due to lack of time
and personnel and financial resources, the DSA port to STOP 4.4 was
abandoned.

2.3 Tasks Not Undertaken

1)

Creation of MLS test directory information base.

2.4 Details Pertaining to Work Performed

2.4.1 Strong Authentication

1)

Van Dyke added a command to the definition of remote-dsa in the Datacraft init
files for dsa-min-auth. This allows the DSA to do different types of
authentication when binding to different DSAs it knows about.

Van Dyke added the Distinguished Name (DN) and time to the bind-token.

Van Dyke added the ability for the DSA get its own name for strong
authentication from the FORTEZZA card when the DSA logs in.

Van Dyke added printing out of the DSA's DN to be used with strong
authentication when doing an assoc_get_config.

Van Dyke finished assoc_get_users to know about strong authenticated binds.

Van Dyke expanded the size of the session protocol data unit (SPDU) that the
DSA would accept upon a session connect.

Van Dyke began testing DSP binds.

Van Dyke performed initial integration of their developed FORTEZZA strong
authentication software with the Datacraft DSA on the XTS-300.

Though not completed for this proof-of-concept, these efforts were not wasted, because
the Van Dyke strong authentication code has been incorporated by Datacratft into their
standard DSA product, which is being used by the MISSI DMS/DII Guard.

2.4.2 X.500 Product Selection
The DSA to be used on this proof-of-concept had to meet the following requirements:

1) Must support the 1993 Version of the X.500 Series of Recommendations
(including access controls, extended information model, replication using
shadowing, schema enhancements);

2) DSA must provide SQL interface for storage of directory information;

3) DSA must support ACP 133, or vendor must commit to enhance DSA to provide
this support (including integrity on all requests, results, and errors; confidentiality
of stored attributes; rule based access control);

4) Vendor must be willing to migrate to Version 3 certificates;

5) Vendor must be willing to provide source code to be ported to the Wang
XTS-300 platform for this effort; source code licence will be reduced significantly
in price or waived;

6) Vendor must make commitment to support development of the MLS Directory Server;

7) Vendor must be willing to provide source code for review by official government
or government contracted certification and accreditation/evaluation facilities
such as the U.S. National Computer Security Center.

The Datacraft Directory System Agent (DX500) was selected for this proof-of-concept
because it met or exceeded the above requirements. Other DSA products evaluated
were the ISODE QUIPU DSA, the Nexor DSA, the Marben DSA, the Unisys DSA. The
first three were rejected due to lack of relational database interface or acceptable
schedule for providing such an interface; the last was rejected due to lack of support for
full DAP (vs. LDAP) and Unisys unwillingness to significantly reduce their source
license fee.

Despite the non-completion of the proof-of-concept, the selection of Datacraft's DSA
turned out to be a boon. The DMS Guard project began initially using the Nexor DSA,
but the highly favorable experiences of Wang's and Van Dyke's engineers with the very
well engineered Datacraft software, and the DSA's capabilities, and Datacraft's
willingness and commitment to provide ACP-133 and other needed enhancements to
their standard commercial product led the DMS Guard project to switch to the Datacraft
DSA early in their project.

2.4.3 Port of Trusted RUBIX to XTS-300

The following describes changés made to Trusted RUBIX, difficulties encountered, and
optimizations performed for the XTS-300 porting effort.

1)

The STOP operating system is not UNIX. All System V "UNIXisms" in the
Trusted RUBIX code had to be removed. Trusted RUBIX was designed to take
advantage of the underlying System V operating system by directly calling many
functions taken for granted by UNIX programmers. To be a truly portable
system, Trusted RUBIX had to have these characteristics isolated. These
characteristics include, but are not limited to the following:

lid_t and level_t data types

lvidom, Ivlequal, Ivifile, Ivlin, Iviout, Ivlproc, ivivis
fork/pipe/exec

strdup, getuid, getpid, etc.

ITI's technical director made the decision to have the Trusted RUBIX MAC
Server act as an auditing tool. Otherwise, the Trusted RUBIX SQL engine
component, the largest and most complex part of Trusted RUBIX, would have
had to be implemented in STOP Ring 2 (Trusted Software) so it could perform
auditing. Keeping the SQL engine in Ring 3 (Untrusted Applications) was very
beneficial, both from a security and a portability standpoint. The former because
it minimized the Trusted RUBIX trusted computing base (TCB), and the latter
because Ring 3 runs on top of the STOP Commodity Application System
Services which provide a fairly complete set of Unix System V Application
Programmatic Interfaces, instead of the proprietary Trusted Systems Services
APls that run under Trusted Software in Ring 2. As a result, Trusted RUBIX on
the XTS-300 was implemented with a call from the SQL engine to the MAC
Server to implement auditing.

STOP 4.3 provided no mechanism for an untrusted (Ring 3) process to invoke a
trusted (Ring 2) process. Wang's engineer developed a "hack" to provide this
MLS interprocess communications mechanism (the Trusted Peer Daemon).
However, the TPD was determined to be insufficient. The kind of MLS IPC
mechanism required, however, was being implemented for the DMS Guard
program as part of the Kernel in the next release of the STOP operating system,
so it was decided to wait until that release became available before proceeding
with the Trusted RUBIX port.

The compiler that comes with the STOP operating system has significant
limitations. For instance, it took quite a bit of effort to discover that one cannot
compile and generate object code with debugging information (-g). Also, to use
memory manipulation functions (memcpy, memcmp, etc.) the developer must
include <memory.h> to avoid strange compilation errors that do not indicate
memory.h is required.

Initially, there was no generic standard IPC mechanism between all separate
Trusted RUBIX processes. Each process had its own custom version of IPC. To
enhance portability, a generic interface for IPC within Trusted RUBIX was built,
implemented first under UNIX, then later under STOP. This IPC package was
required to complete the port. It was determined that under STOP, a Wang
engineer could implement the mechanism more efficiently. The ITI engineer
provided specification (man pages), to which specifications the Wang engineer
developed the IPC. However, due to lack of testing between processes running
in different rings of STOP, the usefulness of the resulting IPC was severely
limited.

The Trusted RUBIX object isolation mechanism had to be modified because
STOP does not allow a UNIX-like "change process level" privilege. There was a
significant enough difference between the STOP B3-evaluated protection
scheme and the System V protection scheme to require the change.

The XTS-300 i486 EISA-based platform, where almost all of the development
occurred, was not terribly performant. The lack of performance resulted in slow
debug, compile, and run times. ITI later leamed that Wang's STOP system
developers use a cross-compilation environment for their development efforts,
thus avoiding such performance problems.

The largest impediment to the progress of the Trusted RUBIX port was the lack
of runtime debugging utilities on the XTS-300. A porting problem that would
have taken 30-60 minutes to debug took over a week of concerted effort to
troubleshoot. This meant the Trusted RUBIX porting effort was drawn out
significantly, with problems that would have necessitated one normal work day of
debugging on another system taking up to eight weeks to resolve on the
XTS-300. printf(), the primary available means for debugging in STOP does not
work correctly under Ring 2.

The Unix System 3.2 Bourne shell on the XTS-300 crashed repeatedly. XTS-300
developers have generated a gnu based package which provides a modemn
useable shell (bash), but for interal use only.

10)

11)

12)

13)

14)

The STOP O/S libraries are not developer-oriented. Because there is a limited
number of engineers using STOP as a development platform, and the STOP
developers themselves use a cross-compilation environment, there has not been
a large base of libraries developed over the years. For example, there are no
library functions to:

. convert MAC labels to strings and visa versa;
. provide communications between rings.

The 1T1 engineers replaced the Trusted RUBIX pipe IPC format with a shared
memory IPC.

The IT! engineers identified other areas which would make future Trusted RUBIX
ports easier. These included adjustments to the organization of Trusted RUBIX to
place the MAC TCB components into another set of directories. This directory would
correspond to Ring 2 executables (which need to be compiled differently). This work
of separating the executables was identified but not performed under this project.

The biggest problem, e.g., the show-stopper, was the fact that the DSA port to
the XTS-300 did not work. The available version of the DSA was functional as
far as the "passthrough" mode was concermned (pass-through mode is when the
DSA routes requests to a remote database instead of a local one). It is important
to note that the local database mode exercises some portions of DSA code not
exercised otherwise, including the DIP (database interface), DIT (database
translation), some memory allocation/listing modules, etc. Aithough the Trusted
RUBIX software works when the same SQL queries are typed in manually,
running it through the DIP interface causes problems. The problems manifest
themselves as errors in the memory allocation modules. Lack of funding
prevented debugging of the system by someone knowledgeable of the DSA

source code. As noted previously, "blind-debugging” would be difficult and very
time-intensive.

Some of the functionality of the Datacraft DSA is generated via a program known
as an ASN.1 compiler. This compiler takes a descriptive file as input and
generates C code as output. On the XTS-300 platform, there is no ASN.1
compiler available. Therefore, all ASN.1 compilations occurred on the Sun
SPARCstation, which were then copied over to the XTS-300 for C code
compilation and finally linked into the DSA program. This means that there is no

method available to natively build the DSA on the XTS-300 and the generated C
code is of questionable origin.

Although Trusted RUBIX and DSA were integrated on the XTS-300, problem #13
prevents successful operation at this time.

3 Proof-of-Concept Deliverable

The actual delivery resulting from this proof-of-concept effort will be Trusted RUBIX
integrated with the Datacraft DSA on a Sun SPARC platform, i.e., the integration work
completed in August 1996. X.500 functionality will be demonstrable, though the TCB
will not be assured, and so the proof-of-concept should not be used in any operational
context.

4 Conclusion

The MLS Directory Server proof-of-concept provided a unique opportunity to study the
design of an MLS Directories based on the X.500 Series of Recommendations. This
proof-of-concept really only touched the surface, however, of what would be required to
develop a fully functional, operational-caliber MLS Directory Server.

As a result of this project, Wang and Van Dyke have begun work with the NSA's MISSI
program to specify and design such an operational MLS Directory Server which will
support true MLS labeling and schema design, MLS replication using DISP shadowing,
DSP chaining at multiple security levels, strong two-way authentication and signed
operations (as per ACP-133), and an acceptable level of aggregate assurance (based

on the highest possible levels of certified assurance of component Trusted Computing
Bases).

Based on our discussions with the MISSI program , it seems likely they will task Wang
(and Wang-designated team of subcontractors) to develop such an operational MLS
Directory Server, most likely in late 1998 or early 1999 time frame, as part of the MISSI
Network Security Manager program. At that time, the lessons leamed from the Rome

Laboratories MLS Directory Server proof-of-concept will be important to help assure the
success of the effort.

-10 -

APPENDIX A

MLS X.500 Directory Server
Functional Specification

11

MLS X.500 Directory Server
Functional Specification

Version 1 — 26 February 1996

Prepared for:

UNITED STATES AIR FORCE ROME LABORATORY
RL/C3AB
525 Brooks Road
Rome, NY 13441-4505

Prepared by:

Karen Goertzel
WANG FEDERAL, INC.
7900 Westpark Drive
McLean, VA 22102-4299

Laura Boyer
J.G. VAN DYKE & ASSOCIATES, INC.
141 National Business Parkway — Suite 210
Annapolis Junction, MD 20701

Mark Smith
INFOSYSTEMS TECHNOLOGY, INC.
6411 Ivy Lane
Greenbelt, MD 20770

12

MLS X.500 Diractory Server Functional Specification Version 1, 2/26/96

1.0 INTRODUCTION AND BACKGROUND

The United States Department of Defense (DoD) and allied defense ministries and departments are
migrating to the use of open system solutions based on international standards for their messaging,
network management, security, and document interchange systems. The U.S. DoD is developing
a single messaging system for all individual user and organizational messaging. This Defense
Messaging System (DMS) will use the X.400 Message Handling System protocols combined with
the Secure Data Network System (SDNS) Message Security Protocol (MSP), the X.500 Directory
System protocols, and the Common Management Information Protocol (CMIP). The combination
of these technologies will provide the DoD with the required messaging, security, network
management, and directory services to implement global messaging capabilities. The X.500
Directory System will provide an integral part of the DMS infrastructure, by providing a means to
store and distribute addressing and security information.

The current DMS solution addresses the Sensitive-Unclassified environment. As DMS evolves to
address the requirements of SECRET and TOP SECRET environments, the storage, distribution,
and maintenance of classified directory information will become a large problem. Our MLS X.500
Directory Server will solve this problem and many others. In June 1995, the Director of Central
Intelligence mandated that all intelligence services and agencies (S&As) will use the DMS. These
organizations have serious concerns about storing directory information in Sensitive-Unclassified
directories. In response to these concerns, the MLS X.500 Directory Server could be used to
store, distribute, and maintain information at any security classification level, and at multiple
classification levels within the same X.500 directory.

Many other U.S. government S&As are also beginning to use X.500 solutions. These include:

Internal Revenue Service (IRS)

Department of Energy (DOE)

General Services Administration (GSA)

National Aeronautics and Space Administration (NASA)
U.S. Postal Service (USPS)

In addition, several allied defense departments/ministries, including those of France, the United
Kingdom, and Australia, are implementing their own global messaging systems, and these systems
will have very similar requirements to that of the U.S. DMS, including requirements for X.500
Directory Service that can accommodate information different levels of security classification.

This document defines the functional requirements for a multilevel secure (MLS) X.500 Directory
Server. This system will use the Infosystems Technologies Inc. (ITI) Trusted RUBIX database to
store X.500 directory information at multiple security classification levels. The Trusted RUBIX
database will be ported to the Wang Federal Inc. XTS-300 B3 Trusted Computing Base. A
commercial-off-the-shelf (COTS) X.500 Directory Server Agent (DSA) developed by Datacraft
Technologies Pty. Ltd. is being evaluated to assess its portability to the XTS-300, and its ability to
be integrated with the Trusted RUBIX database. This product, or another COTS X.500 DSA, will
be used to provide the X.500 communication protocol interface to other X.500 systems.

This functional specification describes how the XTS-300 platform, the Trusted RUBIX database,
and the X.500 DSA will be integrated to form an MLS X.500 Directory Server. The initial
implementation of this MLS Directory Server has been structured as a research and development
proof-of-concept funded by Rome Air Development Center. This is limited to defining the
functional requirements that must be supported by the individual COTS components to enable the
integration of the MLS Directory Server; it does not deal with general functional requirements of
those components.

13

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

2.0 OPERATIONAL AND ARCHITECTURAL ASSUMPTIONS

2.1 ARCHITECTURE AND FEATURES OF COMPONENTS
1) The architecture and features of the XTS-300 are described in Appendix A.

2) The architecture and features of the Trusted RUBIX relational database management system are
described in Appendix B.

3) The architecture and features of standard X.500 Directory Service are described in Appendix
C. When a particular X.500 product is sclected for this project, Appendix C will be updated
with information about that specific implementation.

2.2 OPERATIONAL ASSUMPTIONS
1) Network connections into the directory server will be single-level.

2) External DUASs will be single-level.
3) External DSAs will be single-level.
4) Sessions (for query or update) will be single-level.

I5) A user who connects at one security level will be allowed to read all data dominated by that
security level.

6) A higher-cleared user who wishes to write (add, modify) data at a lower level than his
clearance must connect at the level of the data he wishes to write.

7) A user cannot write data at any level but that of the connection over which he accesses the
directory server. There can be no “write up”, regardless of Bell-LaPadula policy.

8) DSA chaining, referrals, and multicasting: The current proof-of-concept may have limited
chaining capability allowing single-level chaining between the MLS Directory Server and an
external DSA operating at the level of the DUA that initiates the lookup or update that
necessitates the chaining. It is not expected to be able chain to DSAs at lower levels dominated
by the level of the initiating DUA, though this capability is proposed as a future enhancement
(see 4.5). Nor is it expected to refer or multicast, as these functions are being strongly
discouraged by the DMS program.

9) The Use of Fortezza in the proof-of-concept: The use of Fortezza in this proof-of-concept will
be for strong two-way identification/authentication between external DUAs/DSAs and the MLS
Directory Server only. Fortezza will not be used to convey the security level of the
communication connection or session. See #8 above.

10) Determining which DUAs can perform updates: The Directory Server will be able to determine
which DUAs are authorized to update the Directory Information Base (DIB), and which DUAs
may only query the DIB. This determination may be based on the DUA’s I&A information.

2.3 ARCHITECTURAL ASSUMPTIONS
1) There will be a single internal DSA at each security level for which data is stored in the
multilevel database (DIB).

2) There will be a security level in the DIB that correlates to each single-level internal DSA.

14

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

3) External DUAs and DSAs will communicate only with the internal DSA at their own level.
They will not be able to communicate with an internal DSA at any other level than their own.
To enable an external DUA to look up information at all levels dominated by the DUA’s
security level, “downgrading” of DAP lookup requests to the internal DSA will be performed
as a standard database function of Trusted RUBIX.

4) For the purposes of this proof-of-concept, network connections will be considered single-
level, and will be determined by the classification level of the discrete physical network over
which the connection is made. The handling of security levels logical connections will be an
issue for future study. See Section 4.3.

See Figure 1 for an functional diagram of the Proof-of-Concept MLS X.500 Directory Server.

2.4 INTERNAL INTERFACES
The database access protocol implemented between the DSA and the DIB will be a SQL APL

2.5 EXTERNAL INTERFACES

The integrated MLS directory server will appear to all external DUAs, DSAs as a single DSA. The
integrated MLS directory server will support all X.500-1993 standard protocols for communication
between itself and other X.500 entities, including DAP for DUA-DSA communications, DSP for
DSA-DSA chaining, and DISP for actual DSA-DSA shadowing. A proposed future enhancement
(see Section 4.5) will be to implement DOP for negotiating DSA-DSA shadowing agreements.

The integrated MLS Directory Server will implement the TCP/IP communications stack through the
TCP layer. On top of this will run an RFC 1006 TCP-to-TP4 transition capability. On top of this
will run all necessary OSI protocols to enable correct functioning of DUA-DSA and DSA-DSA
communications. It is expected that all necessary communications functionality from RFC 1006 on
up the OSI stack will be included in the DSA product, and will function with the TCP/IP stack
provided on the XTS-300 platform.

15

MLS X.500 Directory Server Functional Specification

Version 1, 2/26,96

VSa N

vsSa S

vSa Si

S1

asa

dasa

\QT
0
Y

- 3asvd HNILNdWNOD
- @3LSNYL 00€-SLX

vYSa N

dvd

vsa s

dvd

- vsasl

Bujujeyd [oAsj-eibuis Yylm

loatas A1010a41d 00S°X SN pajesbaju) - enbu

dvd

VNa N

vnas

vna si

16

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

3.0 MLS X.500 DIRECTORY SERVER FUNCTIONS

The MLS Directory Server is anticipated to support all X.500-1993 standard DSA functionality
provided by the DSA product on which it is based (e.g., Datacraft DX500 OpenDirectory). The
integration of this DSA with Trusted RUBIX, and its implementation on the XTS-300, should not
limit the X.500 functionality in any way, except in ways constrained by the Mandatory security
policy of the system

To the extent possible, configuration of the mandatory policies of the STOP Operating System and
the Trusted RUBIX RDBMS will be implemented to minimize impact on the X.500 functionality
of the MLS Directory Server.

3.1 BmND PROCESS

When a directory user want to connect to the DSA, to look up or update information, the user’s
DUA must first connect—or bind—to the DSA via the DAP bind operation. Variables of the bind
operation consists are a version number and the user’s credentials. These credentials can be simple
or strong. DMS and other programs are mandating the use of strong credentials, based on the use
of digital signatures generated by public-key cryptosystems. This strong authentication is
supported in accordance with the X.509 Authentication Framework. The integrated MLS directory
server will make its access control decisions based on the user’s authenticated credentials.

3.2 DIRECTORY LOOKUP ACCESS

The integrated MLS directory server must appear to all external X.500 entities (DUAs, DSAs) as a
single DSA. However, unlike a single-level DSA, the MLS Directory Server can allow any single-
level DUA at any classification level (dominated by the user’s clearance level) to look up (database
read) information not only at its own classification level, but at all classification levels below it.
This ability would be enabled by the fact that there will be multiple security levels of data stored in
the multilevel database that acts as the directory server’s Directory Information Base (DIB), in
accordance with and enforcing the Bell-LaPadula model.

For example, if the DIB contained data ranging in classification from UNCLASSIFIED-BUT-
SENSITIVE to TOP SECRET, a TOP SECRET DUA would be able to read information at the
TOP SECRET, SECRET, CONFIDENTIAL, AND UNCLASSIFIED-BUT-SENSITIVE levels.
By contrast, an UNCLASSIFIED-BUT-SENSITIVE DUA would have access to only to
UNCLASSIFIED-BUT-SENSITIVE data within the same DIB. It is a privileged process in the
database management system (Trusted RUBIX) on which the DIB is based that performs the actual
reclassification of lower-level data before handing it “up” to the higher-classified user over the
single-level session/single-level network.

The Relational Database Management System (RDBMS; Trusted RUBIX), supported by the MLS
operating system (STOP), will enable and enforce all multilevel database read-accesses.

3.3 DIRECTORY UPDATE ACCESS

Directory update (including add, delete, modify, and modifyDN, i.e., database write) operations,
however, are constrained by more than the Bell-LaPadula model. These are constrained by the
level of the network connection over which the write request is transmitted, and by the level of the
requesting DUA. Thus, write operations will only be supported at the same level as the DUA and
network connection. For example, a TOP SECRET DUA would only be able to update, add,
delete, modify, and modifyDN TOP SECRET data (although that DUA could look up TOP
SECRET down to UNCLASSIFIED-BUT-SENSITIVE data); an UNCLASSIFIED-BUT-
SENSITIVE DUA would only be able to access UNCLASSIFIED-BUT-SENSITIVE data.

17

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

The RDBMS will allow only single-level update accesses, with the level of the access determined
by the level of the DSA generating the DSP/SQL chained update request. If the RDBMS receives a
DSP call from a higher-level DSA requesting write-access to a lower level in the DIB, it will
prevent the access from occurring.

3.4 Access BY OTHER MLS X.500 ENTITIES

While it will not be possible, with this proof-of-concept implementation, to implement a labeling or
other mechanism to enable the preservation of knowledge of security labels between our MLS
directory server and some other vendor’s multilevel X.500 entity (if such exists), it should be
possible to maintain knowledge of security levels of data transmitted between MLS directory
servers developed by us. See Section 4.9.

3.5 MLS DIRECTORY SERVER PROCESSING

3.5.1 Directory Lookup, All Data Present in Local DIB
1) In this implementation, an external DUA will connect to the MLS Directory Server at the
classification level of the DUA platform’s physical network connection to the XTS-300.

2) A process within the MLS Directory Server will route the requested bind from external DUA to
the internal DSA that operates at the same level as the DUA. The bind will be accomplished as
per the description in Section 3.1 of the X.500 bind operation.

3) The internal DSA will perform the necessary processing of the DUA request, including sending
a SQL query to Trusted RUBIX to retrieve the requested information from the DIB.

4) Trusted RUBIX will derive the security level of the SQL query from the security level of the
requesting DSA (which acts as a Trusted RUBIX client). Trusted RUBIX will then attempt to
retrieve the data to satisfy the SQL query, within the limitations of the system’s security policy.
For example, in response to a TOP SECRET query, Trusted RUBIX will attempt to retrieve
data at all levels dominated by TOP SECRET (ie., TS and below); in response to a Sensitive-
Unclassified query, Trusted RUBIX will attempt to retrieve only Sensitive-Unclassified data.

5) If the data required to satisfy the DUA request exist in the Trusted RUBIX DIB, Trusted
RUBIX will retrieve them and return them to the requesting internal DSA. If the data required
to satisfy the query exist at multiple security levels in the DIB, Trusted RUBIX will perform
the necessary privileged operation to raise the classification of lower-classified data to the level
of the query, then combine the data into a response that satisfies the query.

6) The internal DSA will send the response (including the requested data) to the external DUA.

7) The external DUA will reply by requesting another lookup, an update, or by unbinding from
the internal DSA.

3.5.2 Directory Lookup, Some or All Data Absent from Local DIB
If the data required 1o satisfy a DUA request do not exist in the local DIB, the following steps
replace 3.5.1(5) through 35.1(7):

5) Trusted RUBIX will return a “no information available” response to the internal DSA in Step
3.5.1(5).

6) The internal DSA will chain the unfulfilled request, via DSP, to an external DSA operating at
the same security level as the internal DSA and the originating DUA.

18

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

7) The external DSA will send the requested information (which it will have stored locally, or
which it will need to chain to another DSA to retrieve) via DSP to the internal DSA.

8) The internal DSA will:

» If all requested data were received from the external DSA: forward the response from the
external DSA to the external DUA;

» Ifpart of the requested data were received from the external DSA, and part existed in the
local DIB: combine data and forward the combined response to the external .

9) The external DUA will reply by requesting another lookup, an update, or by unbinding from
the internal DSA.

3.5.3 Update of Directory Information

If the DUA requests an update operation rather than a lookup operation, the following steps replace
35.1(4) through 35.1(7):

4) Trusted RUBIX will derive the security level of the SQL update from the security level of the
requesting DSA (which acts as a Trusted RUBIX client). Trusted RUBIX will then attempt to
update the data to satisfy the SQL at the level of the internal DSA only. Unlike lookup
operations, where a higher-level DSA can lookup data at levels lower than its own, a higher-
level DSA cannot update data any level other than its own,; it cannot write down.

5) Trusted RUBIX will update the data in the local DIB, and return an acknowledgment to the
internal DSA that the update has been committed. If the data required to satisfy the update
request do not exist in the local DIB, the DSA will chain the update request to an external DSA
at the same level as the internal DSA (as per the chaining procedure in Section 3.4.2). The

external DSA will respond with an acknowledgment that the external DIB update has been
committed.

6) The internal DSA will send the response acknowledging the committed update to the external
DUA.

7) The external DUA will reply by requesting another lookup, an update, or by unbinding from
the internal DSA.

19

MLS X.500 Directory Server Functional Sgecification Version 1, 2/26/96

4.0 FUTURES

Based on the success of this proof-of-concept effort, we propose to continue our R&D effort to
further enhance the MLS directory server. Our objective will be to transform the proof-of-concept
into a desirable system that can meet DMS and other operational requirements. This R&D effort
will include, but not be limited to, the following tasks:

4.1 MOVE PROOF-OF-CONCEPT TO NEW XTS-300 RELEASE

The July 1996 release of the Wang Federal XTS-300 will run a new version of the STOP operation
system, 4.2.1, on a multi-processor Pentium platform. For greatly improved performance, and to
enable a re-implementation of the Trusted RUBIX port using the new Ring 2 sockets interface (see
4.2) that will be available in STOP 4.2.1, we propose to recompile/re-link the integrated MLS
directory server on the new release of the XTS-300.

4.2 RE-IMPLEMENT TRUSTED RUBIX UsmNG XTS-300 RING 2 SOCKETS

Because Trusted Sockets will not be available on the XTS-300 until July 1996, the proof of
concept will be implemented using Ring 2 named pipes for interprocess communications between
Ring 2 (trusted) and Ring 3 (untrusted) RUBIX processes. Named pipes, however, present
severe performance limitations which, while acceptable for a functional proof-of-concept, will be
unacceptable in an operational system. Therefore, we propose to re-implement XTS-300-based
Trusted RUBIX to use Ring 2 sockets rather than named pipes for its multlevel interprocess
communications.

4.3 IMPLEMENT SECURITY LABELS BASED ON LOGICAL CONNECTIONS

For the proof-of-concept, each physical network—and all systems on that network—connected to
the XTS-300 is presumed to be operating at single security classification level. The security label
to be recognized by the MLS X.500 Directory Server for each external DUA and DSA on a
particular physical network will be derived from the level of that network. In future, we propose
to derive the security label of a connection from the logical communication path of that connection.
X.509 Strong Authentication, supported by Fortezza cards, will be used to authenticate and track
the security level of the logical connection for the duration of the association between the MLS
Directory Server and the external DUA or DSA.

Logical connection-based security labeling will enable the MLS X.500 Directory Server to operate
in the future DMS environment, wherein multiple security levels of logical connections, separated
by cryptographic means, will be transferred over the same physical network. The use of logical
connection-based security labels will be implemented to support chaining and shadowing between
the MLS Directory Server and external single-level DSAs. This will include the preservation of the
security label for both inbound and outbound DSP, DOP, and DISP communications for the
duraton of the chaining or shadowing association between the MLS Directory Server and the
external DSA(s).

4.4 IMPLEMENT MULTILEVEL CHAINING TO EXTERNAL DSAS

In the proof-of-concept, chaining is supported only at the security level of the DUA request which
the MLS Directory Server must chain to another DSA to fulfill. This means that to fulfill a
SECRET DUA'’s lookup request, the MLS Directory Server will only chain to a SECRET external
DSA, even if the information required by the requesting SECRET DUA actually exists on a lower-
leve] DSA.

20

MLS X.500 Directory Server Functional Specification Varsion 1, 2/26/96

To support chaining from the MLS Directory Server to external DSAs operating at multiple security
levels, we propose to develop a privileged process to enable the MLS Directory Server to
essentially replicate the chaining request to multiple DSAs at each security level dominated by the
original DUA. Thus, to fulfill to a SECRET DUA request, the MLS Directory Server would not
only chain to an external DSA at the SECRET level, but also to additional external DSAs at the
Confidential and Sensitive Unclassified levels, and at the Unclassified level, if security policy

permits (see Figure 2). It may be necessary to port a DUA to the XTS-300 to support this
multilevel chaining capability.

4.5 SupPORT TW0-WAY DSA SHADOWING CAPABILITY

The proof-of-concept MLS Directory Server will support DISP for replication using shadowing.
We propose to implement a capability for the MLS Directory Server to authenticate the security
level of an external DSA that requests shadowing of the information stored in the MLS Di

Server. Based on this authenticated security level, the MLS Directory Server will limit the
information it allows to be shadowed to only information at the security level of the requesting
DSA,; for example, a SECRET DSA will receive only SECRET information from the MLS
Directory Server’s multilevel DIB. If the subscribing DSA is also multilevel, multiple associations
may be required to distribute information at only the security levels supported by the subscribing
DSA. In addition, we propose to demonstrate that the MLS Directory Server can also act as a
consumer of information managed and supplied by external single-level and multilevel DSAs, to
prove that all updates of directory information do not have to occur on the MLS Directory Server,
but that updated information can be shadowed to the MLS Directory Server from external DSAs.

4.6 IMPLEMENT FuLL DMS SCHEMA

The directory schema is meta-information that describes the structure and content of the actual
information held in the X.500 directory. The schema is built up of layers of definitions, with each
layer forming the foundation for the next. Entries in the directory are defined as belonging to one
or more object classes, and have various “must contain” and “may contain” attribute types
associated with them; each attribute type contains one or more values.

X.500 is flexible in allowing different applications to define a directory schema to support the
required Directory Information Base. However, to support a given directory user community, the
DSAs supporting that community must be aware of the same schema so they can all process
requests for included attributes and entities. The proof-of-concept MLS Directory Server schema
will be only a subset of the DMS schema. We propose in future to enhance the MLS Directory
Server to support the entire DMS directory schema, as outlined in the DMS X.500 Directory
Baseline Schema, 23 February 1996.

4.7 IMPLEMENT MISSI ProTocoL FILTERING, DIRTY WORD ScaNs, ETC.

The NSA Multilevel Information System Security Initiative (MISSI) have currently implemented a
DAP filter to ensure that any requests leaving a “secure” enclave have been verified to ensure that
such requests have first been processed through one or more predetermined filters to strip out
“bad” data. It may be necessary to provide filters for DSA and DISP in future. We propose to
enhance the MLS Directory Server to make use of these MISSI X.500 protocol filters. This
enhancement will bring the MLS Directory Server nearer to compliance with the MISSI
requirements for the Secure Network Server-based X.500 guard.

4.8 IMPLEMENT X.500 STANDARD OPERATIONAL SECURITY ENHANCEMENTS
There is currently under review in the X.500 community a set of Draft Amendments (DAMs) to the

X.500 standard support Enhancement of Directory Operational Security. These enhancements
include:

21

Version 1, 226,96

MLS X.500 Directory Server Functional Specification

i

asva ONILNdWOD
a31SNHL 00€-S1X

vSa s

dSa

ssesoid
pelejjajud ”

vSa Si

?

Buimopeys/Bujujeyd vsa leAs}inw yim

dvad
dva 7
vnas
dva
vna si

1an19s A1019341d 00S°X SN palelbaju| zenby

22

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

1) Integrity of stored data based on digital signatures;
2) Confidentiality of stored data based on encryption;
3) Auditing facilities;

4) Rules-based access control;

5) Context-based access control.

As these DAMs become stable, we propose to enhance the MLS Directory Server to provide this
additional functionality. Such enhancements will not only ensure that the MLS Directory Server
remains in compliance with international standards, they may provide the first proof-of-concept in
the internau;;)anrala.X.SOO of the practical implementation of these proposed enhancements to the
X.500 stan

4.9 IMPLEMENT TRUSTED LABELS BETWEEN MLS X.500 ENTITIES

To enable communications between two MLS Directory Servers, between the MLS Directory
Server and another vendor’s MLS DSA, or between the MLS Directory Server, and an MLS, we
propose implementing a trusted labeling mechanism similar in intent to DNSix and CIPSO.

23

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

Appendix A. XTS-300 FEATURES AND ARCHITECTURE

The XTS-300 is described in the following pages.

24

ATS=-800"

B3 Trusted Computing Base

Technical Overview

WANG

XTS-300...the Next Generation

he newest generation in Wang

Federal, Inc.’s family of high-

assurance systems, the XTS.
300™, runs on a commodity 50MHz
Intel 80486 EISA bus system. The
Intel four-ring chip architecture was
selected specifically for its ability to
augment the trusted operating system
by physically isolating security do-
mains in hardware.

The XTS-300 represents an order of
magnitude of improvement in price-
performance over the XTS-200. A
single-processor XTS-300 delivers up
to 20 times the processing speed of a
single-CPU XTS-200™. Because it
uses commodity hardware, the XTS-
300 costs 80% less than the XTS-200.

Running on an Intel™ 486 processor,
the XTS-300’s STOP operating system

is designed to execute programs com-
patible with the Intel Binary Compat-
ibility Standard 2 (iBCS2) within the
constraints of the system’s multilevel
secure operating model. This means
many commercial PC applications can
run on the XTS-300, as long as they
comply with iBCS2. In addition, in-
creased compliance to the UNIX™ Sys-
tem V Interface Definition (SVID) pro-
vides UNIX compatibility to compiled
applications.

In today’s military, civilian, and com-
mercial environments, information se-
curity is critical. Government and pri-
vate enterprises are concentrating on
comprehensive security policies that
address all aspects of their business
operations, and which use state-of-the-
art computer and communications
technologies.

XTS-300...a Matter of Trust

security policy is multifaceted; it must ad-

dress personnel security (eg, screening and/

or granting of security clearances), control
of physical access to computing facilities, and data
security, ie, the rules for handling sensitive and clas-
sified information. A security policy in turn dictates
the specific computer and communications security
safeguards and countermeasures to be used in a par.
ticular information system; such protection mecha-
nisms may include TEMPEST equipment, encryp-
tion, and/or a Trusted Computing Base (TCB) de-
signed to authorize users and control access to sys-
tem resources and data.

The XTS-300 provides a multilevel secure (MLS)
Trusted Computing Base combining hardware and
software to implement system’s security policy.
The system represents the culmination of over 20
years' experience and expertise in the development
of MLS computing technology. Following Wang
Federal’s previous-generation XTS-200, which re-
ceived its Class B3 security certification from the
National Security Agency’s National Computer Se-
curity Center (NCSC) in June 1992, the XTS-300
received ita Class B3 level security certification
in May 1995.

XTS-200 and XTS-300 are trademarks of Wang Feders!, Inc.
UNKX is 8 trademark of ATAT Bell Laborstories.

XTS8-300 Technical Overview

FS95-227-00

XTS-300...Protection Mechanisms

he NCSC, in their Trusted Computer Secu-
rity Evaluation Criteria (TCSEC; CSC-STD-
' 001-83)1, also known as the “Orange Book”
(one of several “Rainbow Books” providing guidance
on implementing secure, or “trusted” computing en-
vironments), define the criteria for determining the
level of security—or trust—provided by a computer
system. The Yellow Book, or Computer Security Re-
quirements: Guidance for Applying the Department
of Defense Trusted Computer System Evaluation Cri-
teria in Specific Environments (CSC-STD-003-83),
and its companion Technical Rationale Behind CSC-
STD-003-85: Computer Security Requirements (CSC-
STD-004-85) describe how to apply the TCSEC guide-
lines in different modes of operation to protect sen-
sitive and classified information against varying
degrees of security risk. In short, the Yellow Book
describes the practical application of the TCSEC.

The TCSEC defines four divisions into which secure
computer systems can be classified according to the
security features they provide, and the amount of
confidence—or assurance— that those security fea-
tures will operate as documented. TCSEC divisions

range from D through A, with D providing the low-
est level of assurance and security functionality, and
A the highest level of assurance and security func-
tionality. As a Class B3 system, the XTS-300 deliv-
ers a very high level of assurance, and the most se-
curity functionality possible.

Within each division are up to three classes, with
each class bringing an increase in security funec-
tionality and assurance within the same division.
Each division and class is named according to its
predominant security feature.

The XTS-300 is a Class B3 MLS gystem, which
means it provides the discretionary security and
controlled access protections of Class C2, plus the
labelled security and structured protections of
Class B2, plus the security domains of Classes B3
and Al. As a Class B3 system, the XTS-300 can
simultaneously process and store information at
varying sensitivity and security levels in both
single-level and compartmented-mode operations,
and be simultaneously accessed by users with
varying clearances and needs-to-know.

TCSEC SECURITY DIVISIONS AND CLASSES

Division Classes Some Evaluated Products

D: Minimal Protection — sufficient only Dt Eyedentify™

to protect undassified, non-sensitive

information D2 Tigersafe™

C: Discretionary Protection — C1: Discretionary Security Protection IBM RACF™ Ver 1 Rel § w/MVS™

considered sufficient for providing user

accountability and “need to know” C2: Controfled Access Protection Digital Equipment Corporation Open

protection defingd by the data’s owner minimum security for systems procured VMS VAX™ Rel. 6.0 « ORACLE 7™
by US Govsemment.

B: Mandatory Protection — where
muttilevel security begins

B1: Labelled Security Protection

B2: Structured Protection

SecureWare CMW+™ Ver 1.0 » Hewleft-
Packard HP-UX BLS » INFORMIX
Online/Secure 4.1

Trusted Information Systems Trusted
Xenix™ 3.0 « Verdix VSLAN™ 5.0 »
Wang Fedaral Multics™ MR11.0

B3: Security Domains Wang Federal XTS-300™ / XTS-200™
A: Verified Protection — idantical in Al Boeing Secure Network Server * Wang
functionality with B3, but provides a Federal SCOMP™
higher level of assurance based on
extensive documentation and formal
proofs
F885-227-00 XTS-300 Technical Overview

27

SECURITY FUNCTIONS BY TCSEC CLASS

. not required for s cless

Discrefionary Access Contral (DAC)
Object Reuse

Inlagrity
Export of LabeSled Information
Export 10 Multevel Devices
Export 1o Single-Lavel Devicos
Labelling of Human-Resdable Output
Mandatory Access Conirol (MAC)
Subject Senslivity Labels
Device Labels
Identiication and Authentication (1RA)

Psh
Syslem Architeclure

Systom integrity

Securily Testing

Design Specification and Verification

Covert Channel Analysis

Trusted Faclity Management
Management

Trusted Recovery

Trusied Distribution

Securily Feahres User's Guide

Trusied Faclity Manual

Test Documentstion

Design Documenistion

DOCUMEN-
TATION

XTS-300...Point of Reference

tor concept. A Reference Monitor is the

mechanism in an automated information
system that enforces permisaible, or authorized, ac-
cess relationships between the system's subjects—
ie, active elements that attempt access (ie, pro-
cesses)—and its objects, ie., passive elements that
are accessed (ie, data segments, processes, devices).

T he XTS-300 implementas the Reference Moni-

Subjects in the XTS-300 can be devices or execut-
ing user programs (ie, process-domain pairs). Sub-
jects can be trusted or untrusted, implying the de-
gree of discipline with which they were developed
and with which they operate. Not all subjects need
to be trusted to get the job done. Trusted subjects
are only used when it's necessary to manipulate
the system’s high-integrity databases; if necessary,
they operate according to controlled exceptions to
the customary TCB-enforced access control rules.
Thus, a subject is considered trusted only if its
integrity level allows it to manipulate TCB data-

bases , or if it possesses privileges that exempt it
from specific TCB access control rules.

The Reference Monitor checks every access at-
tempt—or reference—against a list of authorized ref-
erence types (ie, read, write, execute) allowed to the
particular subject attempting the reference. This
Reference Monitor check validates that the subject
is indeed allowed to make the requested type of ref-
erence to the requested object.

The Reference Monitor is an essential element of any
computer system that provides MLS processing, For
the Reference Monitor of an MLS system to be le-
gitimate, that system's access validation mechanism
must be tamper-proof, and must be invoked for ev-
ery reference by a subject to an object. The Reference
Monitor is implemented in the system’s Security Ker-
nel, which uses the specific hardware features of the
Intel platform to maintain total isolation between
subject and object security levels.

XTS-300...Security and Integrity

ited to referencing objects according to the

T he subjects in a MLS system are strictly lim-
NCSC-approved Bell-LaPadula formal

mathematical model of computer security policy?, In
the XTS-300, this policy is implemented by a set of
security rules designed to protect data from unau-

XTS-300 Technical Overview

FS895-227-00
28

thorized access. The XTS-300 multilevel TCB
implements the Reference Monitor concept and en-
forces the Bell-LaPadula model, while providing
even stricter security * property control. Bell-
LaPadula specifies the following mandatory secu-
rity rules:

+ Simple security: A subject is allowed to read
or execute an object (eg, a data file) only if the
security level of the subject dominates (is
greater than or equal to) that of the object.

» Security * property (read as “Security star
property”): A subject is allowed to write an ob-
ject only if the security level of the object domi-
nates that of the subject. The XTS-300 is even
more restrictive in its implementation of secu-
rity* property protection. It allows the subject
to write to an object only if subject and object
have the same security level and prevents the
problem of lower-level subjects writing higher-
level objects that they are then not allowed to
read or modify.

The XTS-300 TCB also enforces KJ Biba's integ-
rity policy?, a corollary to the Bell-LaPadula model
that enforces the system’s mandatory integrity
rules. These integrity rules protect information
from unauthorized modification (writing), whereas
security rules protect information from unautho-
rized access (reading). As with its security * prop-
erty enforcement, the XTS-300 provides even
stricter integrity * property control than that
called for by Biba. Specifically, Biba integrity
policy enforces these rules:

+ Simple integrity: A subject is allowed to read
or execute an object (eg, a data file) only if the
integrity level of the object dominates that of
the subject.

+ Integrity * property (read as “Integrity star
property”): A subject is allowed to write an ob-
ject only if the integrity level of the subject domi-
nates that of the object (exception: one process
may write up to another). The XTS-300 goes a
step farther, allowing a subject to write an ob-
ject only if the integrity level of subject and ob-
ject match.

The XTS-300 TCB supports 16 hierarchical secu-
rity classifications and 64 mutually-independent
security compartments or categories; it also sup-

ports eight (8) hierarchical integrity classifications
(four for users, one for operating system domain
programs, one for operators, one for administra-
tors, and one not assigned) and 16 mutually-inde-
pendent integrity compartments or categories. The
integrity classifications include at least the follow-
ing three classifications:

user < operator < administratoxr

where the subject to the left of “<" is less privi-
leged than the subject to its right.

The XTS-300 TCB includes privileged programs,
such as FSM (File System Manager), that allow
high-integrity users to circumvent these rules in
a highly controlled manner so that they are able
to construct a usable file system hierarchy.

The XTS-300 also enforces a discretionary or need-
to-know policy, whereby access to an object is de-
termined by the identity of its subjects and/or the
groups to which they belong. Thus, the TCB en-
forces this discretionary access rule:

+ Access modes: A subject is allowed to access
an object in only those mode(s) granted by the
owner of the object. Each object shall be as-
signed allowed permissions (read, write, ex-
ecute) for the owner of the object, for the mem-
bers of the owner’s group for other specifically
identified groups, and for all others.

Each object is referenced by its own unique iden-
tifier3, and each has its own set of access informa-
tion and status information. This access informa-
tion includes the object’s subtypes and mandatory
and discretionary access attributes, and is the
basis upon which the Security Kernel makes its
decisions. Specifically, an object’s mandatory ac-
cess information consists of its security level and
categories, and its integrity level and categories.

DISCRETIONARY ACCESS CONTROL
An object’s discretionary access information includes;

* object's owner and group identifiers;
+ read, write, execute permissions for owner,
members of groups to which he belongs, and

other users;

* up to six (6) user and group identifiers and their

FS95-227-00

XTS-300 Technical Overview

specific permissions (read, writs, execute);

* brackets specifying rings for read, write, and ex-
ecute (or control for devices);

+ object’s subtype (see “Additional Policy Enforce-
ment”, below).

The TCB follows a set of general rules to determine
whether a subject should be granted discretionary
access to an object:

+ If subject owns object, use specified owner per-
missions; otherwise

* If entry exists for subject in Access Control List
(ACL), use ACL permissions; otherwise

+ If subject’s current group is the same as group of
object’s owner(s), use specified group permissions;
otherwise

+ If there is an entry for group in ACL, use group
permissions; otherwise

+ If subject has no other specific permissions, use

specified “other” ("world”™) permissions.

ADDITIONAL POLICY ENFORCEMENT

In addition to traditional mandatory and discre-
tionary access rules, the TCB also enforces a user-
definable policy that strengthens those rules. This
enforcement policy is designed to limit access to
objects based on subtype. Each process in the sys-
tem is assigned one or more accessible subtype
lists, one for each type of object in the system.
These accessible subtype lists may not be modi-
fied by a subject. Nor can the subtype of an exist-
ing object be modified (if the object’s creator wishes
to change its subtype, he must delete the object,
then recreate it with the new subtype).

The TCB enforces these access rules for subtypes:

Accessible subtypes: A subject is allowed to ac-
cess a data object only if the object’s subtype is
present on the list of subtypes that the subject is
allowed to access for that object type.

Object subtype: An object's subtype is specified
by the object’s creator, and must be derived from
the creator’s list of subtypes that are accessible
for that object type.

XTS-300...the Architecture

gram (STOP) is a complete operating system

made up of two components: the Trusted
Computing Base, that enforces security policy, and
the Commodity Application System Services (CASS),
a UNIX™ System V Release 3.2-like interface and
Intel iBCS2 binary compat-ability, enabling new ap-
plications to be easily developed for, and existing
UNIX applications to be easily ported to, the XTS-
300. These features give system designers flexibil-
ity in using untrusted commodity software applica-
tions on the XTS-300, while relying on the TCB to
provide the security features necessary to yield a
high level of security.

T he XTS-300’s Secure Trusted Operating Pro-

Communications and network support for the XTS-
300 are provided by the Ethernet-connected Se-
cure Communications Subsystem (SCS), a combi-
pation of hardware and software that provides
front-end communications processing to the Host
Secure Processor (where the TCB runs). The SCS
provides the XTS-300's standard commodity net-

work interfaces, which are strictly controlled by
the Host Secure Processor. The SCS is hosted on
an Intel 486 ISA platform, and supports standard
network applications such as TCP/IP, Telnet, and
File Transfer Protocol (FTP).

THE XTS-300 OPERATING SYSTEM...STOP
The XTS-300 Secure Trusted Operating Program—
STOP—has four primary components:

Security Kernel: small and well-structured to
enable complete security evaluation, testing, and
verification. The Kernel provides basic operating
system services, including resource management,
process scheduling, interrupt and trap handling,
auditing, and enforcement of the mandatory secu-
rity policy and discretionary access policy for pro-
cess and device objects. The security policy is com-
posed of two sets of rules, one governing system
security and the other, system integrity.

Trusted System Services (TSS): /O manage-

XT8-300 Technical Overview

FS95-227-00

ment, network services, file system management,
and enforcement of discretionary access policy for
file system objects (ie, services not provided by the
Security Kernel) provided to both trusted and
untrusted applications and system software. The
environment provided by the TSS is controlled by
the underlying Security Kernel, which enforces se-
curity policy upon the TSS and all other XTS-300
operations.

Trusted Software: includes all security relevant
functions that operate as independent services. In
some cases, a Trusted Software function may re-
quire the ability to bypass the TCB's mandatory
and/or discretionary policy controls. For example,
trusted processes enable high-integrity users to set
up and modify the file system hierarchy to accom-
modate the use of high-integrity nodes.

Trusted Software functions are available to
trusted user processes, system operators, and sys-
tem administrators,for performing security-re-
lated system housekeeping, eg, registering/remov-
ing users, assigning passwords, installing and con-
figuring the system, andperforming other operator

tasks not supported by the other STOP components.
Users can also develop their own trusted functions.

Commodity Application System Services
(CASS): an application programmatc interface that
provides an implementation of the UNIX System V
Interface Definition (SVID), enabling easy porting
and development of UNIX applications to the XTS-
300. Only those SVID services that violate STOP se-
curity policy have been replaced by a CASS equiva-
lent, or eliminated.

RINGS OF ISOLATION

The XTS-300 architecture is built on a hardware ring
mechanism which augments the security of the op-
erating system by physically isolating portions of
system processes from tampering. The XTS-300
implements four isolated rings, or domains. In the
figure, the TCB is represented by the shaded por-
tion.

Ring 0: the most privileged domain; reserved for

"the Security Kernel which enforces system secu-

rity policy. /O device drivers reside in Ring 0.

STOP FOUR-RING ARCHITECTURE

USER

Applm Application
Damain
Ring 2 Commodity Application
pey System Sarvicas (CASS)

R
7 02§

Ring 1: reserved for the TSS. Cannot be called or
modified by users.

Ring 2: operating system domain; shared between
Trusted Software and user-developed trusted pro-
cesses running in CASS. Trusted Software cannot,

however, use CASS features; thus the interface to
Trusted Software is proprietary rather than UNIX-
like. Ring 2 links the application domain (Ring 3)

- with the trusted domains of the system. Ring 2 can

contain trusted and untrusted software; whether a
software process is trusted or not depends on its se-

FS95-227-00

XTS-300 Technical Overviaw

ment, network services, file system management,
and enforcement of discretionary access policy for
file system objects (ie, services not provided by the
Security Kernel) provided to both trusted and
untrusted applications and system software. The
environment provided by the TSS is controlled by
the underlying Security Kernel, which enforces se-
curity policy upon the TSS and all other XTS-300
operations.

Trusted Software: includes all security relevant
functions that operate as independent services. In
some cases, a Trusted Software function may re-
quire the ability to bypass the TCB’s mandatory
and/or discretionary policy controls. For example,
trusted processes enable high-integrity users to set
up and modify the file system hierarchy to accom-
modate the use of high-integrity nodes.

Trusted Software functions are available to
trusted user processes, system operators, and sys-
tem administrators,for performing security-re-
lated system housekeeping, eg, registering/remov-
ing users, assigning passwords, installing and con-
figuring the system, andperforming other operator

tasks not supparted by the other STOP components.
Users can also develop their own trusted functions.

Commodity Application System Services
(CASS): an application programmatic intarface that
provides an implementation of the UNIX System V
Interface Definition (SVID), enabling easy porting
and development of UNIX applications to the XTS-
300. Only those SVID services that violate STOP se-
curity policy have been replaced by a CASS equiva-
lent, or eliminated.

RINGS OF ISOLATION

The XTS-300 architecture is built on a hardware ring
mechanism which augments the security of the op-
erating system by physically isolating portions of
system processes from tampering. The XTS-300
implements four isolated rings, or domaing. In the
figure, the TCB is representad by the shaded por-
tion.

Ring 0: the most privileged domain; reserved for
the Security Kernel which enforces system secu-
rity policy. I/O device drivers reside in Ring 0.

STOP FOUR-RING ARCHITECTURE

USER
uum Application
Damem
Ring2 Commodity Application

Ring 1: reserved for the TSS. Cannot be called or
modified by users.

Ring 2: operating system domain; shared between
Trusted Software and user-developed trusted pro-
cesses running in CASS. Trusted Software cannot,

however, use CASS features; thus the interface to
Trusted Software is proprietary rather than UNIX-
like. Ring 2 links the application domain (Ring 3)
with the trusted domains of the system. Ring 2 can
contain trusted and untrusted software; whether a
software process is trusted or not depends on its se-

F$95-227-00

XTS-300 Technical Overview

curity requirements, ie, whether it has to update a
trusted database, and/or whether it has to be exempt
from standard STOP access controls.

Ring 3: application domain, reserved for untrusted
user processes. Ring 3 is the users’ main program-
ming and processing environment. With no security
privileges, Ring 3 is restricted to a local environment
for end users; processing in Ring 3 does not affect
global system operations or global resources.

Processes in the XTS-300 are subject to Bell-
LaPadula and Biba rules bounded by the process
isolation enforced by the Security Kernel; that is,
processes may access information in a ring of the
same or lesser privilege, but not in a ring of greater
privilege. All portions of the TCB are protected from
unauthorized tampering by one or more mechanisms:

Protection from modification: Security Kernel
code and data are protected from modification by any
ring other than the Kernel itself. TSS and CASS code
and data are protected from modification by pro-
cesses in any ring other than their own.

Integrity: All TCB program files, databases, and
most trusted software processes are protected by
setting their integrity level high at an operator’s
level or higher. Untrusted users (subjects) are ex-
cluded from the TCB by restricting their maximum
integrity levels in the user authentication data-
base to below that of the TCB objects.

Private segments: Trusted software processes pro-
tect their temporary data segmenta from untrusted
software by creating them as private segments.
Private segments cannot be shared by other pro-
cesses. This enhances the system’s security by iso-
lating the processes from each other.

Secure path: Before a terminal can communi-
cate with the TCB, the operator must strike the
Secure Attention Key to disconnect the terminal
from an untrusted process. By allowing only one
link at a time between the terminal and any Ring
0, Ring 1, or Ring 2 (trusted or untrusted) pro-
cess, the XTS-300 completely isolates the trusted
communications path from the untrusted commu-
nications path. (Terminals may be shared by mul-
tiple simultaneous untrusted Ring 3 [application]
processes.)

Subtypes: An unlocked terminal to be used by

trusted software is protected from untrusted soft-
ware by using terminal-unique device subtypes.
When the TCB is entered by establishing the secure
path, the secure server removes the terminal sub-
type from all untrusted processes associated with
the terminal session before it unlocks the terminal.
Access to the terminal is restored to untrusted pro-
cesses only after the operator exits the TCB.

The trusted databases that contain sensitive user
access, group access, session control, and print queue
information are protected from unprivileged pro-
cesses by the use of specific segment subtypes.

TRUSTED DATABASES

Certain information in the XTS-300 is maintained
in a protected environment to prevent unautho-
rized modification. These trusted databases may
be manipulated only through the use of trusted
editors, which are accessible only to users system
and security adminisgtrators. The XTS-300 trusted
databases include:

Audit information database: Contains informa-
tion about security auditing functions, protected from
general access by a subtype. STOP is able to audit
up to 256 separate system events, and enables the
selective auditing of events, eg, only those events
performed by specified users, or only those events
occurring above a certain mandatory access level.
The security administrator is the only user privi-
leged to modify audit parameters. However, to as-
sure accountability, even he cannot turn off audit-
ing of his own logins and logouts.

Configuration database: Contains system con-
figuration information, eg, timing parameters, site
identification, and resource allocation, eg, distri-
bution of shared memory and I/O among multiple
processes.

Group access information database: Contains
access authentication information for all user groups
on the system. Users groups are most often formed
to provide a single security profile to a group of us-
ers who perform the same business function, have
the same mission, cr possess the same need to know,

Logical device database: Contains information
about each logical device configured on the sys-
tem, including the devices’ access levels. Physical
devices: terminals, tape drives, disk drives, ete:
are also assigned a logical ID. The system uses

XTS-300 Technical Overview

FS95-227-00

this logical ID to manage the device. In this way,
the system may segment the total capacity of a
single physical hard drive into multiple logical IDs,
thus creating multiple logical drives, each of which
can be allocated to a different subject.

Printer information database: Contains infor-
mation on each system printer. System printers
are configured to support the marked output re-
quirements of DoD Regulation DoD 5200.1-R.
Today’s XTS-300 supports simple serial interface
(non-laser) printers.

Print request queue: Contains information on
each print request.

Security map database: Maps access levels and
categories to their I/O character string represen-
tation (ie, character strings representing the 16
security classifications and eight integrity classi-
fications and 64 security categories and 16 integ-
rity categories).

Session control database: Contains information
to manage each current terminal session.

System directory: A file system directory con-
taining the program images (ie, binary ex-

ecutables) for all trusted programs-—including sys-
tem dssmons—that are not commands. The Ker-
nel and TSS are also stored in the system direc-
tory. The system directory’s access levels are mini-
mum security and maximum integrity (ie, any user
may read, but only the administrator may write).

Terminal configuration database: Contains in-
formation about each configured terminal.

Trusted directory: A file system directory con-
taining the program images for all trusted com-
mands (excluding system damons, which are
stored in the system directory). The access level
of this directory is minimum security and maxi-
mum integrity (ie, any user may read, but only
administrator may write).

Trusted information database: Contains vari-
ous system parameters, such as start-up flag, log-
in banner, default automatic log-out time-out, ete.

User access databases: The user access authenti-
cation database contains log-in information, maxi-
mum access level, default access level, and privileges
for each user. The user access information database
contains the user’s name, home directory, and his
command processor pathname (if any).

XTS-300...MLS Trusted Computing Base

he XTS-300 TCB provides multilevel secu-

rity (MLS) by simultaneously processing

l and storing data at different classification/
sensitivity levels and need-to-know categories;

these multiple levels of data can be simultaneously
accessed by users at different clearance levels.

Implementing a MLS TCB can reduce the cost and
eliminate the problems inherent with other common
approaches to handling multilevel data. The single-
level or dedicated mode of operation can require a
different computer system to be dedicated to each
classification level of data, which is obviously costly;
or a single computer may be used, but will require
the user to change his own and the system'’s secu-
rity level each time he wishes to process data at a
different level. Such level changes require cumber-
some “scrubbing” techniques before the system can
be used to process a different level of data.

The second approach to multilevel data process-

ing requires the use of a “system-high” environ.
ment; in system-high mode, all systems and per-
sonnel are cleared to the highest level of any in-
formation that may be handled in the environment.
This alternative is also costly, and results in large
numbers of "overly cleared” personnel who don’t
necessarily have a need to know the information
for which they are cleared.

Once information is stored in a system-high system,
it assumes the classification level of that system, re-
gardless of its true nature (eg, Not-Classified-but-
Sensitive information stored in a SECRET system-
high system becomes SECRET, even though the in-
formation's content has not changed). For a lower-
level user to recover information stored in a system-
high system, the “high side” must perform tedious,
error-prone manual downgrading to return the in-
formation to its original (or appropriate) sensitiv-
ity/classification level.

FS$95-227-00

XTS-300 Technical Overview

True multilevel secure systems enable the simul-
taneous storage and access of data classified at
different security levels. The range of classifica-
tion levels that may be processed by a single MLS
system is governed by the clearance level of the
user and the security evaluation level of that sys-
tem. The Security Index Matrices in the NCSC
Computer Security Requirements (“Yellow Book™;
CSC-STD-004-85) show which evaluation level
should be employed for each possible combination
of user clearance level and data sensitivity level
in open and closed security environmentsS.

WHY B3?

According to the NCSC, a Class B3 system is re-
quired for storing and processing of data in open
security environments where operating mode is con-
trolled multilevel and user clearances and data sen-
sitivity fall within the ranges indicated in the “Se-
curity Index Matrix for Open Security Environ-
ments”, taken from the Yellow Book (CSC-STD-004-
85); this matrix is reproduced on page 9, with ranges
requiring Class B3 or greater highlighted.

A Class B3 system is also required in closed secu-
rity environments where operating mode is multi-
level, and user clearances fall within slightly differ-
ent ranges (refer to the Yellow Book for its “Security
Index Matrix for Closed Security Environments”).

“YELLOW BOOK”
SECURITY INDEX MATRIX

Maximum sensitivity of data

UIN]C| S|TS]ICIMG

U |ct]|s1|e2}
N Ci1}C2{82
Minimum ¢ bl R
cdlearance or S Ctj G2jC2
authorization | Ts(BI) |ct]c2C2

of users

TS (SBI) | C1] C2]C2
1C Ct1] C21C2
MC Ci| c2|C2

A Class B3 system may be used in ranges which
would normally require Al systems (or where data
exchange would be prohibited) if the technical se-
curity of the B3 system is augmented by applying
additional personnel, physical, or administrative
safeguards and countermeasures. This would in-
clude higher risk environments where prescribed
Al systems are considered impractical, or where
current technology is unable to provide sufficient
protection on its own.

XTS-300...MLS in the Real World

o organizations who don't fully understand
I its benefits and applicability to their mis-
sion, MLS can seem excessive, both in

terms of management and cost.

The truth is, the cost of operating in a completely
MLS environment is beyond the reach of many or-
ganizations. But then, most organizations do not
require complete MLS from end to end. Their re-
quirements can be satisfied by hybrid environments
composed of “islands” of dedicated-mode or system-
high processing (eg, communities of interest) linked
together in a highly-controlled manner by Trusted
Switches or Guards. With its Class B3 security func-
tionality and assurance, and commodity communi-
cations interfaces, the XTS-300 is the ideal platform
for high-assurance Trusted Switch and Trusted
Guard applications.

XTS-300 AS TRUSTED SWITCH

A Trusted Switch controls access from users’
single-level terminals operating at different secu-
rity levels to multiple host systems operating at
different security levels. The Trusted Switch then
plays the dual role of guarding access to the host
systems and providing a single-—or unitary—log-
in for each user.

With a Trusted Switch, the security administrator
defines the access profile for each user—listing the
systems he is allowed to access, the functions he is
allowed to perform on each system, the classifica-
tion levels and categories of information he is allowed
to access, and the manner in which he is allowed to
process it, The user then has the convenience of a
single log-in to the Trusted Switch, which controls
all access to the multiple hosts.

XTS-300 Technical Overview

FS85-227-00

TRUSTED SWITCH CONCEPT

CENTRAL SITE
TCP/IP LAN (Level 1)
TCPAP LAN (Level 2)
Trusted
Switch
TCPIIP LAN (Level 3)
TCP/IP LAN (Level 4)

Except for log-in, the Trusted Switch acts trans-
parently as the interface between users and the
host system(s). Running as a trusted switch, the
XTS-300 introduces no noticeable overhead or deg-
radation to end-to-end network performance.

XTS-300 AS TRUSTED GUARD

A Trusted Guard sits between host computer sys-
tems operating at different security levels, and
controls the transfer of data among the systems.
A Guard can (1) validate all requests for informa-
tion to ensure that the requestor possesses the re-
quired access permissions to the desired data; (2)
analyze the data's security profile to ensure that
this profile complies with the security environment
of the receiving system; and (3) perform data pro-
cessing required by the security policy governing
the transfer, eg, classification regrade, sanitiza-
tion, encryption, auditing.

A Trusted Guard can automate what is currently a
tedious, error-prone manual process—the review
before transmitting of data stored in a system-high

REMOTE SITE

TCPAP LAN (Leved 1)

/ TCP/IP LAN (Level 4)

Trusted
Switch

environment to ensure that, even though they are
stored in a system at one level, they are really by
nature at a lower level, and can thus be downgraded
and sent to a system classified at the same level.

Because a Guard automates the scanning and pro-
cessing of the data, it greatly reduces the margin
of error, and vastly speeds the processing of trans-
fers between different level systems. Depending
on an organization’s security policy, the Guard
may be implemented to fully or only partially au-
tomate the process; in the former case, the guard
might operate according to a set of rulea for “sani-
tization”, scanning for “dirty words” (eg, code-
words, classified mission names, etc.) in a file, and
essentially censoring the file by deleting or replac-
ing those words; or it may simply reject the file
transfer and audit the rejection. In the case of a
partially-automated Guard, when a file transfer
is rejected (ie, the file does not meet the security
rules or criteria for multilevel transfer), the Guard

may forward it to a human data content specialist
for manual processing.

FS95-227-00 XTS-300 Technical Overview

TRUSTED GUARD CONCEPT

.

TRUSTED GUARD APPLICATION
SECURITY POUCY CONFIGURATION
[k fr |
tansfors | policy for
ACKs
LOWSIDE HiGH SIDE
SYSTEM . , — SYSTEM
DAT, s | oF Joams | 3 |0ama | 23 | our dar,
+MHS / o-mad 5 ZE = 2E *MHS / o-mai
*RDBMS 4‘2_“ 35 ES g § «RDEMS
+ fila ransfor = z3 82 53 «file ¥ansfor
« ED! transfer > > > « EDI transfor
splc oolc
: g 3% %g 33 g
ack 32 2 =2
| sppiaton
sossn Contert Audt
- Specialist Reducion
data fink Interface Tools
physical
References

1 CSC-STD-001-83, Department of Defense Trusted Computer
System Evaluation Criteria, 15 Aug. 1883,

2 Bell, D.E. and LaPadula, LJ., Secure Computer System: Unified
Exposition and Multice Interpretation, ESD-TR-75-306; Elec-
tronic Systems Division [AFSC], 1978.

3 Biba, K.J.: Integrity Considerations for Secure Computer Sys-
tems, MTR-3153; Mitre Corporation, Bedford, MA, April 1977.

4 An arbitrary number assigned to the object by the Security Ker-
nel when that object is created. The unique identifier remains
constant even if the original name of the object is changed.

B Open security envrionments are defined as those in which appli-
cation developers and maintainers are not cleared highly enough
(is, systems procesging Confidential and below require program-
mers cleared to same level as most sensitive data; systams pro-
cessing SECRET and above require programmers to be clearsd
to at least SECRET) to provide assurance that they have not
introduced malicious logic (eg, Trojan horses) into the system
code, and also where configuration control does not provide suf-
ficient assurance that applications are protectad against intro-
duction of malicious logic before or during operation.

Closed security environments are those in which develop-
ers are sufficiently cleared, and configuration management pro-
videe sufficient assurance against introduction of malicioualogic.

XTS-300 Technical Overview

FS95-227-00

Wang Federal, Inc.
XTS-300 B3 EPL

Report No.: CSC-EPL-95/003.A
AS OF: 30 May 1995
MAINTAINED PRODUCT: XTS-300 release 4.1
ORIGINAL PRODUCT: XTS-200 release 3.1.E
VENDOR: Wang Federal, Inc.
EVALUATION CLASS: B3

PRODUCT DESCRIPTION:

The XTS-300 product is a combination of STOP 4.1, a multilevel secure operating system, and
an Intel 80486 PC/AT hardware base using the EISA bus. STOP is a multiprogramming system
that can support terminal connections for up to 19 users. Up to 200 processes can run
concurrently, each with up to four gigabytes of virtual memory. STOP is designed not only to
support much of the UNIX System V interface for applications software, but to produce and run
object programs that adhere to a subset of the Intel386 Family Binary Compatibility Specification
2 as well. Network connedtivity is provided by the Secure Communications Subsystem, which
off-loads lower layer network protocol processing outside the TCB.

STOP consists of four components: the Security Kemel, which operates in the most privileged
ring and provides all mandatory, and a portion of the discretionary, access control; the TCB
System Services, which operates in the next-most-privileged ring, and implements a hierarchical
file system, supports user /O, and implements the remaining discretionary access control;
Trusted Software, which provides the remaining security services and user commands; and
Commodity Application System Services (CASS), which operates in a less privileged ring and
provides the UNIX-like interface. CASS is not in the TCB.

The XTS-300 uses a standard 32-bit, Intel 80486 PC/AT base with a bus that conforms to the
EISA standard. A wide variety of off-the-shelf EISA peripherals are included in the evaluated
configuration.

The system provides mandatory access control that allows for both a secrecy and integrity
policy. The mandatory security policy enforced by the XTS-300 is based on the Bell and
LaPadula security model; the mandatory integrity policy is based on the Biba integrity model.
The system implements discretionary access controls and provides for user identification and
authentication needed for user ID-based policy enforcement. Individual accountability provided
through with an auditing capability. Data scavenging is prevented through object reuse. The
trusted path mechanism is provided by the implementation of a Secure Attention Key (SAK).

The separation of administrator and operator roles is enforced using the integrity policy. The
system enforces the "principle of least privilege® (i.e., users should have no more authorization
than that required to perform their functions) for each of the two defined privileged roles
available. All actions performed by privileged users can be audited. The audit log is protected
from modification. STOP also provides an alarm mechanism to detect the accumulation of
events that indicate an imminent violation of the security policy.

The TCB uses strong architectural characteristics: minimization, layering, abstraction, and data
hiding. The TCB makes use of hardware features 1o provide process separation and TCB
isolation and has been designed and implemented to resist penetration. The system design is
based on a security model and a descriptive top-level specification.

38

PRODUCT STATUS:

The STOP operating system was developed by, and is marketed and supported by, Wang
Federal, Inc. Release 4.1 of the XTS-300 can be ordered after July 1, 1995. Orders can be
placed with:

Robert J. LeBlanc (703) 827-6910
Technical Projects Manager ~ FAX: (703) 827-3255
Intemet: leblancr@wangfed.com
Wang Federal, Inc.
7900 Westpark Drive
McLean, Virginia 22102

SECURITY EVALUATION SUMMARY:

The security protection provided by the original product, XTS-200 release 3.1.E, was evaluated
by the National Security Agency (NSA) against the requirements specified by the Department of
Defense Trusted Computer System Evaluation Criteria [DOD 5200.28-STD] dated December
1985. The NSA evaluation team determined that the system satisfied all the specified
requirements of the Criteria at class B3. The original evaluation was completed in May 1992.
The original product was produced by HFSI, which has since been acquired by WANG.

XTS-300 release 4.1 is actually based on release 3.2.E of the XTS-200. Release 3.2.E
underwent a Ratings Maintenance Phase (RAMP) evaluation based on the original product and
successfully completed it in January 1994.

To RAMP release 4.1 of the XTS-300, the vendor maintained the security properties of XTS-200
release 3.2.E, performed configuration management of the changes, and enhanced the security
test suite and system documentation appropriately. The security protection provided by XTS-300
release 4.1 has been evaluated against the requirements specified in the Criteria by a joint
NSA/vendor analysis team. The NSA/vendor team has also evaluated the system change
procedures followed by the vendor against the B2+ RAMP requirements [Eval_Announcements
forum transaction 268] dated September 1992.

The joint NSA/vendor evaluation team has determined that release 4.1 of the XTS-300 satisfies
all the specified requirements of the Criteria at class B3 and that the vendor satisfied all the B2+
RAMP requirements. The conclusions of the evaluation team have been reviewed and approved
by NSA. For a complete description of how XTS-300 release 4.1 satisfies each requirement of
the Criteria, see Final Evaluation Report, Wang Federal Inc., XTS-300 (Report CSC-EPL-
95/003.A).

The Final Evaluation Report should be consulted for the complete lists of evaluated hardware
and software components.

ENVIRONMENTAL STRENGTHS:

The XTS-300 is the only computer system evaluated at class B3 or above (except the XTS-
200 and SCOMP, an A1-rated system produced by the vendor which is now out-of-date).
The XTS-300 is general-purpose in that it can be used for a range of purposes from
personal workstation to multi-user guard/gateway. With additional application support, it
is suitable as a network server or firewall. The XTS-300 is a microcomputer based on
standard, commodity hardware. At class B3, the XTS-300 provides greater assurance of
secure operation than a CMW, B1, or B2 system. It should thereby be accreditable in a
wider range of environments than other systems; i.e., it should be accreditable to
separate a wider range of data classification levels. Beyond the minimal requirements for
a B3 system, the XTS-300 provides a mandatory integrity policy and a familiar, UNIX-like
environment for single-level applications. Integrity can be used for virus protection. The
UNIX-like environment supports binary compatibility and will run many programs
imported from other systems without recompilation.

39

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

Appendix B. TRUSTED RUBIX FEATURES AND ARCHITECTURE

Trusted RUBIX is described in the following pages.

40

.

Trusted RUBIX

RELATIONAL DATABASE MANAGEMENT SYSTEM
Version 3.0 - March 1996

Infosystems Technology, Inc.
6411 Ivy Lane, Suite 306
Greenbelt, Maryland
(301) 345-7800

41

Version 3.0 Trusted RUBIX

OVERVIEW

As government and corporate organizations move to open systems,
they require assurance that sensitive data is highly protected against
unauthorized access, disclosure, or modification. Trusted RUBIX is
the most advanced, secure relational database management systsm
(RDBMS) for the UNIX® environment. Only Trusted RUBIX offers
the mandatory access controls (MAC) that are part of the highest level
of UNIX secunity — B-3 secunity as defined by the Department of
Defense’s “Orange Book.” Trusted RUBIX is designed to meet the
criteria for B-3 level functionality and assurance.

Trusted RUBIX is configurable in C-2, B-1, B-2, or B-3 level configur-
ations of secunity. Commercial and government customers will
benefit from this flexibility and be able to tailor the product to their
own level of security requirements.

Traditionally, information systems have not allowed data to be
separated into different sensitivities within a single database.
Organizations have been forced to separate data physically on
different machines or to provide higher security clearances than
necessary for users. Multilevel secure DBMS’ minimally allow
storage and data processing at different access sensitivity levels on a
single machine without risk of compromise. However, many
applications, particularly in the intelligence community, require
integration or “fusion” of secret data with top secret/special
intelligence data. Such applications require B-3 level labeled security
protection. RDBMS’ targeted to meet only the B-1 level of assurance
cannot be used in these types of environments according to
govenment policies. In such environments, the B-3 multilevel
security features of Trusted RUBIX are essential. In fact, Trusted
RUBIX is the only RDBMS which can provide this level of assurance
without giving up any of the traditional functions associated with the
products of major RDBMS vendors.

42

Trusted RUBIX Version 3.0

Trusted RUBIX adheres to all critical industry standards in order to
deliver unmatched flexibility in deployment, portability of
applications and interoperability with other standards-based Open
Systems. Users can write to standard Application Programming
Interfaces (APIs) such as Embedded SQL (ESQL) and Call Level
Interface (CLI). Trusted RUBIX communicates with client
workstations and other servers using the Remote Database Access

(RDA) standard protocol. Trusted RUBIX is portable across a range
of UNIX operating systems.

43

Version 3.0 Trusted RUBIX

TRUSTED RUBIX FEATURES

Trusted RUBIX has many advanced features, including the following:

A complete set of character string, numeric and date/time data
types gives Trusted RUBIX total control over input/output
formatting and sophisticated data operations.

A client-server architecture which allows untrusted clients to
access either a single or multiple trusted servers running
Trusted RUBIX.

An internal database system design which focuses on the
modularity and layering principles which are critical in high
assurance systems.

ANSI-compliant SQL (X3.35-1992) which also supports
many novel language constructs to facilitate data management
and security operations.

Trusted RUBIX implements ANSI SQL compliant declarative

integrity constraints to support entity integrity and referential
integrity.

Soplusticated techniques for cost-based and heuristic query
optimization.

A single file RDBMS architecture which supports large,
complex databases with an unlimited number of simul-
taneously open relations, views, and indexes.

Through the use of logical views, different users can access
and manipulate different portions of the database. The view
mechanism is extremely storage efficient.

Trusted RUBIX supports both string and binary fields that are

varying in length (BLOBs). The maximum field length can be
unlimited, subject only to the hardware limitations.

44

Trusted RUBIX Version 3.0

The centralized database dictionary utilizes the database itself
to record the structure of the components which make up the
database.

The unique and sophisticated Trusted RUBIX history
mechanism (dated relations) allows access to past data for
“what-if” analyses and provides rollback and database
concurrency.

Trusted RUBIX's unique multi-version timestamping
concurrency control technique enables the system to securely
manage all changes taking place within the database, even
with multiple applications running.

Trusted RUBIX provides discretionary access controls (DAC)
which specifies who can do what to the data - who can read,
who can insert, who can change, etc.. Only Trusted RUBIX
offers the mandatory access controls (MAC) that are part of
the highest level of UNIX security available.

A complete audit trail enables both legitimate (but accidental)
errors by users and unauthorized requests to be tracked.

Supports asynchronous statement execution which means that
a statement can be executed whenever the system desires, and
control can be returned to the user before execution has
completed.

A savepoint mechanism which allows transactions to be
partially rolled back (on user request). Thus, a user can undo
all updates performed since the specified savepoint, while at

the same time preserving updates performed prior to that
point.

45

Version 3.0 Trusted RUBIX

Supports the ability to declare temporary tables which are
used only to pass intermediate results from one portion of an
application to another. Such tables are “private” to the
application that uses them — there is no sharing of data with
other applications.

Trusted RUBIX provides a comprehensive set of tools for
monitoring database performance and adjusting resource
utilization where indicated. In addition, back-up and recovery
facilities ensure your ability to recover database entities on a
per relation basis or the database as a whole.

46

Trusted RUBIX Version 3.0

TRUSTED RUBIX COMPONENTS

Trusted RUBIX has four major components:

SQL

Embedded SQL

SQL Call Level Interface (CLI)
Remote Database Access (RDA)

SQL (Structured Query Language)

Trusted RUBIX fully supports the American National Standard
Database Language (SQL) (X3.135-1992). SQL is a widely accepted
(by RDBMS vendors and users) non-procedural, English-like query
language that is ideally suited for all types of database operations.
The set of commands included in SQL are used for a variety of
operations including:

B Insert, delete and update functions

B Create, modify, replace and drop functions
B Integrity and consistency features

B Access control features

The SQL syntax and semantics are used for specifying and modifying
the structure and the integrity constraints of data and for declaring and
invoking operations on the data in a local or remote RDBMS.

SQL and RDBMS are a prime example of the client-server computing
architecture which has become a de facto standard. In the client-
server model, an application running on one machine can share the
task of processing information with another machine, such as a
network server.

SQL also allows vendors to create extensions to the standard that
enable their products to do tasks that other SQL-compliant RDBMS

may not do. A prime area for such extension activity is security or
trust.

47

Version 3.0 Trusted RUBIX

Embedded SQL

Embedded SQL is a set of database language procedures (SQL
commands) embedded within a standard programming language, i.c.,
C. It includes all SQL commands and additional flow control
commands. The embedded SQL statement syntax is compiled
(translated) into statements that conform to the particular
programming language syntax. Thus, the programmer can enjoy the
convenience and notational conciseness of the SQL queries while
relying upon the powerful semantics of the C language to control the
logic of the application.

Trusted RUBIX embedded SQL may be either static or dynamic.
Static SQL is embedded in the procedural language; dynamic SQL
usually results when the user writes the SQL statement. A static SQL
command embedded in a language like C, is executed as if it were a
query entered from the command line. If the programming language
cannot handle record level queries, a mechanism called a cursor is
used to retrieve from a single table.

In general, an SQL query can retrieve many rows (records). The host
program (i.e., C) will typically go through the retrieved rows and
process them one at a time. The cursor is used to allow row-at-a-time
processing by the host program. The cursor is like a pointer that
points to a single row from the result of a query. The cursor is
declared when the SQL command is specified in the program. A
cursor command can fetch the query result from the database and sets
the cursor to a position before the first row. Each subsequent
command moves the cursor to the next row and copies its attribute
values into the host program. This is similar to traditional record-at-a-
time file processing.

48

Trusted RUBIX Version 3.0

SQL Call Level Interface (CLI)

SQL was originally developed as a way to embed, in an application
program, static or dynamic operations on a database. Embedded SQL
code is typically converted by an implementation-specific
preprocessor into code that is compiled and executed. Dynamic SQL
makes SQL more flexible and applies it to cases where the desired
database operations are not known at the time the application program
is written. Although SQL statements are interpreted dynamically
during the course of the program’s execution, dynamic SQL is still an
embedded invocation technique. As a result, it still typically works
through a preprocessor which requires that portable applications be
distributed as source code.

The SQL Call Level Interface (CLI) is an application programming
interface (API) for database access. CLI is an alternative invocation
technique to dynamic SQL that provides essentially equivalent
operations. CLI is a set of functions that application programs call
directly using normal call facilities. CLI is ideally suited for a
client/server environment, in which the target database is not known
when the application program is built.

The international standards consortium X/Open, published a Call-
Level Interface (CLI) specification which is vendor neutral, platform
neutral, and database neutral. Thus, it is possible to use a single API
for data definition, manipulation, and access throughout the
enterprise. Each application uses the single API to interact with one
or several data sources through DBMS-specific drivers. In fact,
drivers available from third parties include generic network-
communications software, eliminating the need for database-specific
protocols. Switching database engines becomes simple — you just
change drivers. Porting applications from one platform or database
to another can become past history. Trusted RUBIX fully shares
X/Open’s commitment to “true” open system architectures.

49

Version 3.0 Trusted RUBIX

Remote Database Access (RDA)

Organizations are interested in developing means to improve
connectivity and interoperability of existing heterogencous database
systems. A significant part of this effort is focused on communication
issues involved in accessing data in a distributed computing
environment.

Prior levels of interoperability between distributed data sources were
limited to homogeneous databases from a single vendor or “gateways”
between heterogeneous databases. The end result, was committment
to a single database vendor and/or expending an inordinate amount of
resources to provide and maintain gateways.

The X/Open intemnational standard Remote Database Access (RDA)
specification defines an approach for accessing remote relational data
managed on various hardware platforms supported by multiple DBMS
vendors. It is based on the use of a standardized SQL application
programming interface (API) and the client/server model of
computing. The communications service and protocol to permit an
RDA server to provide database storage facilities and processing
services to RDA clients is part of the specification. The RDA service
provides independence such that a user may use the same front end
application/development tools to access different DBMS’.

The RDA standard supports two general types of distributed access.
The simplest type allows SQL statements within a transaction to
access data at a single database server. This type of access uses one-
phase commit protocols and is referred to as the RDA Basic
Application Context. The other type of distributed access is more
flexible since it allows different SQL statements within the same
transaction to access different database servers. This more advanced
tvpe of access requires two-phase commit protocols and is referred to
as RDA Transaction Processing Application Context. Trusted
RUBIX provides both types of RDA distributed access.

50

Trusted RUBIX

VERSION 2.5

FEATURE

MVTO

The Cure for Database
Locks Disease .

CONCURRENCY CONTROL IN TRUSTED RUBIX
Replacing Excessive Database Locking with
Multi-Version Timestamping Operations (MVTOQ)

Concurrency control is one of the fundamental
requirements of a database management system
(CBMS). Its purpose is to ensure that concurrently
executing transactions do not conflict and produce
incorrect results. In a muitilevel DBMS, the
concurrency control mechanisms must also not
violate security requirements. In particular, they must
not defeat mandatory security or introduce covert
channels.

Transactions are conceptual objects that provide the
basis for accessing all Trusted RUBIX 2.5 objects.
The transaction is identified by a timnestamp
(transaction-id) which contains the starting time for
the transaction. Due to the requirement that multiple
transactions can be processed within a secoend (the
nermal UNIX time granularity), timestamps are
represented at a granularity of a microsecond. Each
transaction terminates by being either committed,
which makes the modifications to the relation
permanent, or omitted (aborted), which nullifies the
changes.

Trusted RUBIX 2.5 provides a mechanism whereby
multiple processes can concurrently access and
update the same relation at the same time. The
outcome of these concurrent actions must be the
same as if they were executed one at a time in order
of their timestamps. This is referred to as
serializability. In addition, if a transaction is reading
a portion of the relation, it must be able to ensure that
the same reads return the same data (i.e., the data is
“consistent” and thus does not change during the life
of the transaction).

These requirements cause significant overhead and
adversely impact database performance. Trusted
RUBIX 2.5 has been designed to provide user control
over which consistency related problems they wili
tolerate in order to improve performance.

Consistency problems can be caused by the following
phenomena:

Dirty Read

A dirty read is a read operation by a transaction on
a record that has been added or deleted by another
transaction which has not yet committed its update.
if the latter transaction were to omit, the former
would be processing data that does not really exist
in the database

Non-repeatable Read

A non-repeatable read would occur if a
transaction reads the data from a record that is
subsequently updated by another transaction.

- Phantom Rows

A phantom row would occur if a transaction was
allowed to add a record to a relation after a
different transaction with a later timestamp had
read the relation.

A process can use the consistency level to control
which phenomena it will allow to occur. As the
consistency level gets more restrictive, the
performance penalty increases. This should
persuade processes to allow the phenomena to occur
wherever it does not present problems with the
operations of the process.

The consistency level of a transaction which can only
be set at transaction start, defines which of the three
phenomena are allowed to occur while processing.
The following table shows the four consistency levels
and defines which phenomena are allowed to occur
at each level.

N aoat’ =7} Dirty Phantem
- Level repeatable
Read Read Rows
NONE OK OK oK
(0)
MIDDLE - OK OK
(2)
HIGH - - oK
)
VERY HIGH - - -
(4

The Inconvenient and Insecure Way - Locking

The most practiced form of concurrency control — and
that which is employed by most commercial
databases — is the concept of "locking." Quite simply
put, if a data record is being updated by somebody,
that data record is "locked" until all the updates are
completed. Many database management systems

51

apply locking at the tabie level. That means, while a
given record or set of records in the table is being
updated, THE ENTIRE TABLE is out of any other
users' grasp. The impact is a detrimental effect on
performance as computer cycles are wasted waiting
for the table to be available.

Most DBMSs only protect against the dirty read
problem noted above. If serializability is desired, the
user can specify commands to structure transactions
so that serializability is achieved through row-level
locking. The remaining phantoms can be avoided by
not rereading the same data item, or can be
eliminated by setting table-level locks. Either of these
methods will ensure serializability, though at a
significant cost in concurrency.

Locking has one other major disadvantage: in a
multilevel secure system, users can exploit the
semantics of locking to convey information to each
other in a surreptitious fashion. Suppose that Bob is
cleared to see TOP SECRET military information and
is able to lock records when he reads them. By
locking and unlocking a certain UNCLASSIFIED
record at different times, he could send classified
data to an unclassified user by the bit patterns
generated by the unclassified users' successful and
unsuccessful attempts to update a record that was
being locked and uniocked.

The Convenient and Secure Way - MVTO

Trusted RUBIX 2.5 uses a concurrency control
scheme called “multi-version timestamp ordering,” or
MVTOQ. That's just fancy terminoclogy which means
that when a record is updated, the old version of the
record, which records the values that it had just
before the update, remains and can be consulted in
case of a mishap. When you start a TRANSACTION,
that is, open the database for updating, you are
granted a "timestamp,” which is a value (taken to be
the clock time at the precise mement when you open
the database) that is attached to all the records that
you update. When you update a record, then, the old
value is retired "as of" your timestamp. and the new
value is instantiated “as of' your timestamp. This
means, you have available what the record looked
like before it was changed.

In addition to avoiding locking, timestamps guarantee
the concept of "serializability." What that means is
that when you have a group of users doing different
things to the database in random fashion, the results
are EXACTLY THE SAME as if each user came
along IN HIS TURN and performed his COMPLETE

set of actions on the database. In order to gquarantee
senalizability, centain operations must be disallowed.
For éxample, if { update a record and you come along
later and try to update the oid version before |'ve
made my changes permanent, your update will be
disallowed. Similarly, if you read a record and then
later | tried to upcate it, my update will be disallowed
because t will invalidate any calculations that you've
performed based upon the old value which you
presumed to be the latest value.

Trusted RUBIX 2.5 includes several mechanisms in
its implementation of MVTO which capture attempts
of multipie processes to update the same record at
the same time and attempts to read partial updates
that have not been completed. Trusted RUBIX 2.5
also provides for some mechanisms to bypass and/or
enhance the way MVTO is implemented on a
transaction by transaction basis. These mechanisms
provide for several access modes which enable
processes to:

» RELAXthe serializability constraints at run-time,
thereby enatling a process to make the decision
between performance vs. serializability (higher
senializabity causes lower performance because
of the requirement for additional overhead of
ensuring that serializability is maintained). For
example, if a user requires full serializability, she
can set the consistency level to very high,
thereby ensuring that she experiences no
phenomena that could affect serializability.
However, she could increase concurrent access
by setting the consistency level to a lower value,
such as high, which would only have minimal
effect on serializability, while dramatically
improving concurrent access.

» SPECIFY the timestamp of the current
transaction and therefore ottain a historical as of
view of the database. This is only permitted on
read operations.

» RELAX the constraints on the visibility of work
performed by other transacticns that have not yet
compileted.

» NOT automatically atort a transaction when an
excepticn is raised. Instead, Trusted RUBIX 2.5
refuses to perform the operation and gives the
user the cheice of continuing on with other work,
or atorting the transaction. This is much more
suitable because only the process can know
whether or not it must abort because of the
exception.

Infosystems Technology, Inc.
6411 Ivy Lane, Sute 306
Greenbeft, Maryland 20770
(301) 345-7800

52

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

Appendix C. X.500 FEATURES AND ARCHITECTURE

The X.500 Directory system provides the model, procedures, and means to access a potentially
global repository of information. The 1993 version of the X.500 Recommendations provides a
robust directory service by defining mechanisms to support distributed environments, with access
control on the information that is stored in the directory.

X.500 comprises the following components: Directory User Agents (DUAs) and Directory
System Agents (DSAs). In addition, DMS have defined a special component, the Administrative
Directory User Agent (ADUA), which will provide authorized users with the ability to maintain the
information in the directory via the add, delete, and modify entry operations of the X.500 directory
service protocols. Only through the ADUA can the DMS directory be modified; users not
authorized for the ADUA will be limited to the standard DUA, which will support only X.500
lookup functions, and will not be able to modify the directory in any way.

To support the communications among the DUAs and DSAs, several communications protocols
are defined in X.500, including the Directory Access Protocol (DUA-DSA), the Directory System
Protocol (DSA- DSA), the Directory Operational (Binding Management) Protocol (supplier DSA-
consumer DSA), and the Directory Information Shadowing Protocol (supplier DS A-consumer
DSA).

C.1 DUA

The Directory User Agent is a software application that acts on behalf of a user, accessing
information stored in the DSA’s Directory Information Base (DIB). The DUA connects—binds—
to the DSA, then performs browse or lookup operations on the information in the DIB. These
browse and lookup operations include: read, list, search, abandon, and compare. Directory
requests are always initiated by the DUA, which receives results from the DSA. The
communications protocol between the DUA and the DSA is the Directory Access Protocol, DAP.

C.2 DSA

The Directory System Agent is responsible for maintaining the information in the Directory
Information Base. This information may be distributed and managed by multiple DSAs, which
collaborate to gather information in response to a DUA request. The communication protocol for
these distributed operations among DSAs is the Directory System Protocol, DSP.

Multiple DSAs combine to provide a global service to users via the shadowing (replication) of
directory information. Shadowing provides for data redundancy, faster handling of requests
(meeting speed of service requirements), and simplification of directory data management.
Shadowing allows directory information to be copied and automatically synchronized from one
DSA to another. DSAs which hold entries (“shadow suppliers”) can copy these entries to other
DSAs (“shadow consumers”), with administrators controlling the frequency and extent of such
updates. Updates of shadow directory information may be initiated as a result of a change to the
information in the supplier DIB, or it may be performed periodically. Updates may be incremental
(i.e., writing only changes since the last update), or total (complete rewrite of the database).
Unscheduled updates may also be requested, e.g., for recovery from a system or network outage.

The agreements for managing shadowing can be supported by the Directory Operational (Binding
Management) Protocol—DOP—or by bilateral proprietary. The transfer of information to be
shadowed is supported by the Directory Information Shadowing Protocol, DISP.

C.3 Directory Access Protocol

DAP defines the exchanges of requests and outcomes between a DUA and a DSA. DAP provides
access to the information in the DIB. When a user wants to access this information, the user’s

53

MLS X.500 Directory Server Functional Specification Version 1, 2/26/96

DUA sends a DAP bind operation to the DSA. Once connected, the user can read, list, search, and
compare the directory information, or abandon his browse/lookup request. If the user has special
permissions, he can also add, delete, and modify entries, and modify the Distinguished Name
(DN) (in DMS, only ADUA users will have these update permissions). If the DSA can fulfill the
request, it returns a DAP result to the DUA.

C.4 Directory System Protocol

DSP defines the exchange of requests and outcomes between two DSAs. DSP provides
connectivity between DSAs operating in a distributed environment. DSP has similar functionality
to DAP, in that it carries requests and responses to and from the user. Chaining occurs when a
DUA makes a request of its local DSA, and the local DSA, because it does not have the
information requested, must connect to a remote DSA to fulfill the request. If the remote DSA can
fulfill the request, the result is sent back to the DSA, which forwards it to the DUA. In some
cases, the remote DSA may have to further chain to another “back-end” DSA, also using DSP.

C.5 Directory Information Shadowing Protocol
DISP defines the exchange of replicated information between two DS As which have established
shadowing agreements via DOP or an agreed proprietary protocol.

C.6 Directory Operational (Binding Management) Protocol

DOP will define the exchange of administrative information between two DSAs that wish to set up
a shadowing agreement, to administer operational binding between them. The currently available
COTS X.500 DSAs do not yet support DOP. Because of this, the process of negotiating a
shadowing agreement is now handled bilaterally using proprietary (non-standard) methods.

54

APPENDIX B

MLS X.500 Directory Server System
Design Document

55

MLS X.500 Directory Server
System Design Document

Version 1 — 23 August 1996
F596-274-00

Prepared for:

UNITED STATES AIR FORCE ROME LABORATORY
RL/C3AB
525 Brooks Road
Rome, NY 13441-4505

Prepared by:

Karen Goertzel
WANG FEDERAL, INC.

Laura Boyer
J.G. VAN DYKE & ASSOCIATES, INC.

Mark Smith
INFOSYSTEMS TECHNOLOGY, INC.

Rick Harvey
DATACRAFT TECHNOLOGIES PTY LTD

56

MLS X.500 Directory Server System Design Document FS96-274-00

1. SCOPE

1.1 IDENTIFICATION

This document, the System Design Document, describes the detailed architecture and operational
environment of the RADC-funded MLS X.500 Directory Server (proof-of-concept phase), hereafter
referred to as the MLS Directory Server. The architecture of the MLS Directory Server is based on the
requirements identified in the MLS X.500 Directory Server Functional Specification, Version 2 (27 June
1996).

1.2 SYSTEM OVERVIEW

1.2.1 Functional Overview

The MLS Directory Server is, at a functional level, a multilevel secure implementation of an X.500
Directory Server Agent (DSA). It enables the storage of multiple classification levels of X.500
directory information in a single Directory Information Base (DIB) managed by a single Directory
Server. It strictly enforces Bell-LaPadula security policy rules in the handling of Directory lookup
requests, allowing lookup access to directory information DUA/DSA users whose clearances dominate
the classification level of the Directory information being requested. Unlike strict Bell-LaPadula,
however, it enforces a same-level-only update policy, allowing an ADUA user to update only Directory
information at the same classification level as his clearance level.

When the MLS Directory Server cannot satisfy a lookup or update request, it will chain that request to
an external DSA only at the same level as the clearance of the DUA/DSA user whose request the MLS
Directory Server could not satisfy. In the proof-of-concept, there is no privileged upgrader/downgrader
process that would allow replication of chained requests to external DUAs/DSAs at other security
levels (though this kind of trusted process is a key feature of the proposed future enhancement of the
proof-of-concept).

This proof-of-concept does not intend to address the operational security policy problem presented by
shadowing to/from the MLS Directory Server. X.500 shadowing will be supported in the proof-of-
concept, to demonstrate the options for its use. For shadowing from the MLS Directory Server, we will
demonstrate two shadowing options. In one scenario, we will shadow all levels of data in the MLS DIB
(i.e, SBU and Secret) to an external DSA classified Secret, in essence, upgrading the SBU data to
“Secret, system high”. In a second scenario, we will shadow only Secret data from the MLS Directory to
an external Secret DSA, and only SBU data to an external SBU DSA. Information shadowed to the
MLS Directory Server will be stored in the MLS DIB at the level of the source system. Obviously, in an
operational environment, an operational policy decision would have to be taken as to how shadowing
would be handled between the MLS Directory Server and external single-level DSAs.

Before any requests can be transmitted from an external DUA or DSA to the MLS Directory Server, an
authenticated bind must be established between the two. The authentication of this bind will involve
the exchange and authentication of FORTEZZA-generated X.509 authentication information unique to
the DUA or DSA it represents.

1.2.2 Architectural Overview
The MLS Directory Server is, at an architectural level, the integration of three software components
running on the XTS-300 Trusted Computer System. These components are:

1) One or more copies of the Datacraft DX500 Open Directory DSA;

2) One copy of the Trusted RUBIX MLS RDBMS;
3) FORTEZZA-based Identification and Authentication (I&A) libraries.

57

MLS X.500 Directory Server System Design Document FS96-274-00

All external DUAs/DSAs will see the MLS Directory Server as a single DSA. However, in fact,
Directory Server will actually comprise one or more physical DSAs, each at a different classification
level. Thus, each external DUA/DSA will actually bind to the internal DSA at its sarne level. The
XTS-300 STOP operating system will enforce the mandatory separation between internal DSAs, and
restrict each DSA to communicating only over the physical network interface (Ethernet) at its own
level. External DUAs/DSAs are presumed to be connected to system-high (single-level) networks, and
each network will connect only to the XTS-300 network interface at the same level, so the internal DSA
will only be able to connect over its same-level network interface to external DUAs/DSAs at the same
level.

Deriving security labels from the physical network interface level is an understood restriction that
will apply only to this proof-of-concept. In future, we intend to derive security labels from
FORTEZZA-based X.509 or other trustworthy logical (rather than physical) network authentication
information.

1.3 DOCUMENT OVERVIEW

This System Design Document contains the highest level design information for the MLS Directory
Server. The SDD describes the allocation of system requirements to HWCIs, CSCIs, and manual
operations. The SDD describes the characteristics of each HWCI and CSCI, and is used for two
primary purposes: (1) to present the system design to RADC; (2) to provide the design information that
will serve as the basis for integrating the MLS Directory Server components. Additiorally, the SDD
provides an overview of the system that can be presented to other organizations interested in
participating in or funding the ongoing development of the “full-blown” MLS Directory Server after the
completion of the proof-of-concept phase.

The MLS Directory Server SDD contains the following sections:
* Section 1, SCOPE, identifies the system and provides a system and document overview.
* Section 2, REFERENCED DOCUMENTS, provides a list of all documents referenced in this document.

* Section 3, OPERATIONAL CONCEPTS, describes the mission and operational concepts of the system.

Section 4, SYSTEM DESIGN, identifies each HWCI, CSCI, and manual operation of the system, and
describes the relationship of these items within the system, and the system’s external interfaces
with other systems.

* Section 5, PROCESSING RESOURCES, describes the processing resources of the system and each
configuration item that uses those resources.

58

MLS X.500 Directory Server System Design Document FS$96-274-00

2. REFERENCED DOCUMENTS

The following documents were used as resources in the preparation of this document.
e MLS X.500 Directory Server Functional Specification, Version 2 (27 June, 1996); Prepared by Wang

Federal, Inc., J.G. Van Dyke and Associates, Inc., and Infosystems Technology, Inc., for U.S. Air Force
Rome Laboratory/C3AB

o TCB Subset DBMS Architecture Project: Final Report (Document Number TR-9404-00-03); Prepared
by Infosystems Technology, Inc., for U.S. Air Force Rome Laboratory/C3AB

o White Paper: Datacraft's DX500 OpenDirectory™; Published by Datacraft Technologies Pty. Ltd.

o Technical Brief: DX500 OpenDirectory™ Server Version 3.0; Published by Datacraft Technologies
Pty. Ltd.

o XTS-300™ Trusted Computing Base Technical Overview, Version 2 (June 1996); Published by Wang
Federal, Inc.

59

MLS X.500 Directory Server System Dasign Document FS96-274-00

3. OPERATIONAL CONCEPTS

3.1 MissION

3.1.1 User Needs

The U.S. Department of Defense (DoD) and allied defense ministries and departments are migrating
their Information Technology (IT) infrastructures to open system solutions based on international
standards for their messaging, network management, security, and document interchange systems. The
U.S. DoD is developing a single messaging system for all individual user and organizational messaging.
This Defense Messaging System (DMS) will use the X.400 Message Handling System protocols combined
with the Secure Data Network System (SDNS) Message Security Protocol (MSP), the X.500 Directory
System protocols, and the Common Management Information Protocol (CMIP). The combination of these
technologies will provide the DoD with the required messaging, security, network management, and
directory services to implement global messaging capabilities. The X.500 Directory System will
provide an integral part of the DMS infrastructure, by providing a means to store and distribute
addressing and security information.

The current DMS solution addresses the Sensitive-Unclassified environment. As DMS evolves to
address the requirements of SECRET and TOP SECRET environments, the storage, distribution, and
maintenance of classified directory information will become a large problem. Our MLS X.500 Directory
Server will solve this problem and many others. In June 1995, the Director of Central Intelligence
mandated that all intelligence services and agencies (S&As) will use the DMS, and the State
Department will also be a DMS user. These organizations have serious concerns about storing directory
information in Sensitive-Unclassified directories. In response to these concerns, the MLS X.500
Directory Server could be used to store, distribute, and maintain information at any security
classification level, and at multiple classification levels within the same X.500 directory.

Several allied government departments/ministries, including those of France, the U.K., and Australia,
are implementing their own global messaging systems, and these systems will have data classification
policies, and directory and security requirements similar to the DMS's.

3.1.2 Primary Mission

The DMS will begin operation of both Sensitive-but-Unclassified and Secret enclaves by 1 October 1996.
The result will be the need to process X.500 directory information at both classification levels. The
current DMS plan is to maintain single-level X.500 directories at SBU and Secret, with no exchange of
information between them. Unclassified directory information needed by users in the Secret enclave
will have to be replicated to the Secret directory server, with an implicit upgrade of the information to
Secret. This means that any updates of directory information by Secret users, even though the
information originated from the Unclassified enclave, will not be accessible to Unclassified users.

The DMS intends to solve this problem by implementing MLS X.500 guards to enable the transfer of
X.500 lookup and update requests between enclaves. However, a more logical approach, in our opinion,
would be to place MLS X.500 Directory Servers at the borders of those enclaves, to allow SBU and
Secret users to both store and retrieve directory information from a single directory server. This
approach will not only eliminate the need for two levels of directory server (reducing the number of
overall directories required), it will eliminate the need for MLS X.500 guards — in both cases, reducing
the overall cost of deploying X.500 directory service in the DMS environment.

60

MLS X.500 Directory Server System Design Document FS96-274-00

3.1.3 Secondary Mission

A second requirement in the DMS—through the Multilevel Information Systems Security Initiative
(MISSI)—is to provide X.509 certificate servers to store, manage, and disseminate the X.509 permission
certificates needed for DMS distributed processing. These certificates will be needed by users in the
Unclassified and Secret enclaves, and due to the nature of their mission, should be protected at a higher
level of security than the non-security sensitive operational components of the DMS (MTAs, UAs, etc.).
The MLS Directory Server is perfectly positioned to perform the X.509 Certificate Server function of
the DMS, once identified enhancements are put in place (see Section 4.5, “System Design Decisions”).

3.2 OPERATIONAL ENVIRONMENT

The MLS Directory Server in the proof-of-concept phase will be demonstrated in a networked
environment designed, at a very basic level, to simulate the dual-enclave DMS:

* System-high Secret network hosting one (1) Secret DUA and one (1) Secret DSA;
e Sensitive-but-Unclassified (SBU) network hosting one (1) SBU DUA and one (1) SBU DSA.

Figure 3-1 illustrates the proof-of-concept network environment.

ADUA) ADUA
MLS
Directory
DSA _ Server DSA
DUA
\/
SBU Secret

Figure 3-1. Proof-of-Concept Network Architecture

61

MLS X.500 Directory Server Systam Design Document FS96-274-00

3.3 MLS DIRECTORY SERVER COMPONENTS AND DATA FLOWS

Figure 3.2 illustrates the internal and external components and data flows of the proof-of-concept MLS
Directory Server. In the proof-of-concept, there will be external systems, networks, and data at two
different classification levels, SBU and SECRET. This limitation is caused by the current XTS-300
restriction that allows it to support only one dualcard FORTEZZA reader, with each FORTEZZA card
at different levels. Future XTS-300 releases will support at least one more FORTEZZA reader, enabling
support of up to four classification levels by one MLS Directory Server.

XTS-300

DAP

FORTEZZA

MLSDIB

DsP
DoP
DIsP

Figure 3.2. MLS Directory Server Components and Data Flows

62

MLS X.500 Directory Server System Design Document FS06-274-00

4, SYSTEM ARCHITECTURE

4.1 HARDWARE ARCHITECTURE
The MLS Directory Server proof-of-concept is targeted to run on the XTS-300 Intel 486-based and
Pentium-based systems. Figure 4-1 illustrates the two XTS-300 systems.

The hardware architecture for the proof-of-concept is designed to simulate, at a very basic level, the
DMS X.500 operational environment with SBU and Secret enclaves. In the proof-of-concept, each
enclave will be represented by a single LAN at the appropriate security level, with each LAN hosting
a DSA, DUA, and ADUA at the same level. The MLS Directory Server will provide two network
connections, one to the SBU LAN and another to the Secret LAN, with security separation between the
LANs enforced by the TCB of the XTS-300 STOP Operating System which runs the MLS Directory
Server. All components in this proof-of-concept architecture will be equipped with FORTEZZA card
readers.

486-based Pentium-based
XTS-300 XTS-300
TEREE
1.44 MB floppy | E———————y 1.44 MB floppy [===]
4mm DAT =
streamer tape o e (=]
PCMCIA BN

S00MB hard drive

1GB hard drive

.@

o R:TeIT] [| IP—]
optical disk :Kw«:—u
16MB RAM 32MB RAM B
2 ser/1 par ports 2 serial ports
SVGA opt. monitor SVGA w/ color
101 keyboard keyboard
optional mouse mouse

single 250W powaer

dual 300W power

|

Figure 4-1. XTS-300 486- and Pentium-based Systems

Communications and network support for the new XTS-300 no longer relies on the Secure Communications
Subsystem (SCS), a combination of hardware and software that provided front-end communications
processing to the Host Secure Processor (where the TCB runs). With the Pentium-based system, the
Host Secure Processor itself hosts the Ethernet cards (up to four) and TCP/IP stack and application
(FTP, Telnet, SMTP).

63

MLS X.500 Directory Server System Design Document FS96-274-00

4.2 SOFTWARE COMPONENTS

The functional components of the MLS Directory Server can be assigned to the following computer
software configuration items (CSCls): Operating System, X.500 Directory Server Agent, Trusted (MLS)
Relational Database Management System (TRDBMS), FORTEZZA software, and Configuration
Utilities. The major components of these CSCIs are depicted in Figure 4-2.

With the exception of the FORTEZZA 1&A libraries, all CSCls are non-developmental, COTS
software products. The FORTEZZA I&A capability will be provided by existing software developed
by].G. Van Dyke & Associates. The objective of this proof-of-concept is to integrate existing software
components with a minimum of custom development work. This said, there are some slight
modifications that will be made to some COTS components to enable integration.

MLS X.500
Directory
Server

Operating X.500 DSA TRDBMS FORTEZZA Configu-
System DXxs00 Trusted RUBIX Software ration
STOP 43 OpenDirectory Utilities
i~ Secure Kernel - Schema — SQL engine L. Strong Authentic. }~ ACL Configuration
~ TSS — SQL Interface — MAC server - Digital Signature |~ RUBIX Configur.
- Trusted Software &~ Access Controls - Client L. X.509 Certificate k- DSA Configuration
L cass

Figure 4-2. Proof-of-Concept CSCls

These modifications include:

1) Addition of CASS gate software to the standard XTS-300 STOP operating system to enable Ring 3-
resident (untrusted) processes to call Ring 2-resident (trusted) processes in a highly controlled
manner. This CASS gate has been incorporated into the standard STOP Release 4.3, and is thus not
considered a development item.

2) Elimination of specific UNIX System V Release 4.3 dependencies from Trusted RUBIX. The specific
changes performed are:

s elimination of SVR 4.3 dependencies from MAC decision-making code, audit code, and RUBIX
RPC code;

o generic changes to isolation algorithms to eliminate RUBIX capabilities to change levels, as
RUBIX-style level changes are prohibited by the STOP OS.

64

MLS X.500 Directory Server System Design Document FS96-274-00

4.2.1 Operating System Architecture

The XTS-300 operating system architecture is built on top of a hardware (Pentium chip) ring mechanism
which underpins the security of the operating system by physically isolating portions of system
processes from tampering. The XTS-300 implements four isolated rings, or domains. Figure 4-3 depicts
the STOP four-ring architecture; the TCB is represented by the lightly-shaded portion. Architectural
details, including functions and capabilities, of STOP are described below.

4.2.1.1 Reference Monitor

To enforce the mandatory access policies that make the XTS-300"s Secure Trusted Operating Program
(STOP) a multilevel secure, multi-compartment/multi-category operating system, the XTS-300
implements the Reference Monitor concept. The Reference Monitor is the mechanism in the operating
sytsem that enforces authorized access relationships between the system’s subjects (active elements
that attempt access, e.g., user processes) and its objects (passive elements such as data segments,
processes, devices, which are accessed by subjects).

Subjects in the XTS-300 are user programs in execution, and can be trusted or untrusted. Trust implies the
degree of discipline with which a subject was developed and with which it operates. Not all subjects
have to be trusted to get the job done. Trusted subjects are used predominantly when it’s necessary to
manipulate the system’s high-integrity databases, or whenever a strictly-controlled circumvention
enforced of the system’s security rules is performed (as when reclassifying data in a secure guard
application); if necessary, they are allowed to perform strictly~controlled overrides of TCB-enforced
access control rules. A subject is considered trusted only if its integrity level allows it to manipulate
TCB databases, or if it possesses privileges that exempt it from specific TCB access control rules.

The Reference Monitor checks every attempt by a subject to access, or reference, a system object against
the Reference Monitor’s own list of authorized reference types (which comprises read, write, and
execute) which that subject is authorized to perform with regards to the requested object. In this way,
the Reference Monitor validates the subject’s right to perform the requested type of reference to the
requested object (i.e., to ensure that Subject X is indeed allowed to read Object Y).

To ensure the legitimacy of its Reference Monitor, the XTS-300’s access validation mechanism is
tamper-proof, and is invoked for every reference by a subject to an object. The Reference Monitor is
implemented in the system’s Security Kernel, which uses the underlying four-ring architecture of the
Intel chip to maintain total isolation of various operating system functions from one another, and to
isolate operating system code from application code.

42.1.2 STOP Components

The STOP operating system comprises two components: the Trusted Computing Base, that enforces
security policy, and the Commodity Application System Services (CASS), a UNIX-like application
programming environment designed to host unprivileged user applications while providing the TCB
features necessary to yield a high level of security and integrity of those applications. The XTS-300
operating system architecture is built on top of a hardware (Pentium chip) ring mechanism which
underpins the security of the operating system by physically isolating portions of system processes from
tampering. The XTS-300 implements four isolated rings, or domains. In the figure below, the TCB is
represented by the shaded portions.

Ring 0, Security Kernel—Most privileged domain, in which resides the Reference Monitor that enforces
system security policy. I/O device drivers reside in Ring 0. Small and well-structured to enable
complete security evaluation, testing, and verification, the Kernel provides basic operating system
services such as resource management, process scheduling, interrupt and trap handling, auditing, and
enforcement of mandatory security and discretionary access policies for process and device objects. The

security policy is composed of two sets of rules, one governs system security; the other governs system
integrity.

65

MLS X.500 Directory Server System Design Document FS96-274-00

Ring 1, Trusted System Services (TSS)}— Cannot be called or modified by users. Includes network
services, I/O management, file system management, and enforcement of discretionary access policy for
file system objects (ie, services not provided by the Security Kernel) provided to both trusted and
untrusted system software and applications. The environment provided by the TSS is controlled by the
underlying Security Kernel, which enforces mandatory security policy upon the TSS and all other
XTS-300 operations.

Ring 2, Trusted Software and Commodity Application System Services (CASS)}— Operating system
domain; shared between Trusted Software and user-developed trusted processes and the UNIX-like
CASS environment. The published interface to Trusted Software is proprietary with UNIX-like
features. Ring 2 is the only interface between the application domain (Ring 3) and the underlying
trusted domains. Ring 2 can contain trusted and untrusted software; whether a software process is
trusted or not depends on its security requirements, ie, whether it has to update a trusted database,
and/or whether it has to be exempt from standard STOP access controls. Includes all security relevant
functions that operate as independent services (e.g., trusted communications Sockets). In some cases, a
Trusted Software function may require the ability to bypass the TCB’s mandatory and/or discretionary
policy controls. For example, trusted processes enable high-integrity users to set up and modify the file
system hierarchy to accommodate the use of high-integrity nodes. Trusted Software functions are
available to trusted user processes, and system operators and administrators,for performing security-
related system housekeeping such as registering/removing users, assigning passwords, installing and
configuring the system, andfor performing other privileged tasks not supported by other STOP
components.

CASS is the users” main programming and processing environment. With no privileges to violate
security policy, CASS includes an application programmatic interface that provides an
implementation of the UNIX System V Interface Definition (SVID), enabling easy UNIX application
porting or development on the XTS-300. Only a very few SVID services that violate the NSA-defined
security policy have been replaced by a CASS equivalent, or eliminated. In addition, in STOP 4.3,
CASS includes a gate (not part of the TCB) that enables Ring 3 processes to spawn Ring 2 processes, a
capability required by some commodity MLS applications.

Ring 3, Application Domain—Reserved for untrusted user-developed (or ported) processes. Can run
“shrink-wrapped” UNIX applications that comply with the Intel Binary Compatibility Standard
(iBCS2).

4.2.1.3 Mandatory Security and Integrity Policies

The subjects in a MLS system are strictly limited to referencing objects according to the NCSC-approved
Bell-LaPadula formal mathematical model of computer security policy3. In the XTS-300, this policy is
implemented by a set of security rules designed to protect data from unauthorized access. The XTS-300
multilevel TCB implements the Reference Monitor concept and enforces the Bell-LaPadula model,
while providing even stricter security * property control. Bell-LaPadula specifies the following
mandatory security policy rules:

Simple security—A subject may read or execute an object only if the security level of the subject
dominates (is greater than or equal fo) that of the object.

Security * property (read: “Security star property”)—A subject may write an object only if the
security level of the object dominates that of the subject. The XTS-300 is even more restrictive in
its implementation of security * property protection. It allows a subject to write to an object only
if subject and object are at the same security level, preventing the problem of a lower-level
subject writing higher-level objects that it may not then read or modify.

66

MLS X.500 Directory Server System Design Document FS96-274-00

Unique in the industry, the XTS-300 TCB also enforces K.J. Biba’s integrity policy, a corollary to the
Bell-LaPadula security model that enforces the system’s mandatory integrity rules. These rules protect
information from unauthorized modification (writing), whereas security rules protect information from
unautorized access (reading). As with its security * property enforcement, the XTS-300 provides even

stricter integrity * property control than called for by Biba. Specifically, Biba integrity policy enforces
the following mandatory integrity rules:

Simple integrity—A subject may read or execute an object (eg, a data file) only if the integrity
level of the object dominates that of the subject.

Integrity * property (read: “Integrity star property”)—A subject may write an object only if the
integrity level of the subject dominates that of the object (exception: one process may write up
to another). The XTS-300 goes a step farther, allowing a subject to write an object only if the
integrity level of subject and object match.

The XTS-300 supports 16 hierarchical security classifications and 64 mutually-independent security
‘compartments or categories, eight (8) hierarchical integrity classifications (four for users, one for
operating system domain programs, one for operators, one for administrators, and one to be assigned by
security administrator) and 16 mutually-independent integrity compartments or categories. The
integrity classifications include at least the following:

user < operator < administrator

(“<” indicates that subject to left is less privileged than subject to right.)

The XTS-300’s integrity policy is particularly useful for providing highly protected domains that
enable executables to run and configuration files to be read by all processes that need to read them
while preventing those objects from being modified (e.g., by malicious logic such as Trojan Horses). The
XTS-300 TCB contains privileged programs, such as FSM (File System Manager), that allow users with
high integrity privileges to circumvent these rules in a highly controlled and audited manner so that
they are able to construct a usable file system hierarchy.

The XTS-300 also enforces a discretionary or need-to-know policy, whereby access to an object is

determined by the identity of its subjects and/or the groups to which they belong. The TCB enforces the
following discretionary access rule:

Access modes—A subject may access an object in only those mode(s) granted by the owner of the
object. Each object shall be assigned permissions (read, write, execute) for the owner of the

object, for the members of the owner’s group for other specifically identified groups, and for all
others.

Each object is referenced by its own unique identifier, and each has its own set of access information and
status information. This access information includes the object’s subtypes and mandatory and
discretionary access attributes, and is the basis upon which the Security Kernel makes its decisions.

Specifically, an object’s mandatory access information consists of its security level and categories, and
its integrity level and categories.

4.2.1.4 Discretionary Access Policy
Object discretionary access information includes:

* object’s owner and group identifiers;

* read, write, execute permissions for owner, for members of groups to which owner belongs, and for all
other users;

67

MLS X.500 Directory Server System Dasign Document FS96-274-00

e up to six (6) user and group identifiers and their permissions (read, write, execute);

» object’s subtype (subtypes are finer gradations of protection; there may be one or more subtypes per
“parent” type).

The TCB follows a set of general rules to determine whether a subject should be granted discretionary
access to an object:

o If subject owns object, use specified owner permissions; if not
 If entry exists for subject in Access Control List (ACL), use ACL permissions; if not

 If subject’s current group is the same as group of object’s owner(s), use specified group permissions;
if not

» If there is an entry for group in ACL, use group permissions; if not
¢ If subject has no other specific permissions, use specified “other” (“world”) permissions.

4.2.1.5 Philosophy of Protection

All software processes in the XTS-300 are subject to Bell-LaPadula security and Biba integrity rules
bounded by the process isolation enforced by the Security Kernel; processes may access information in a
ring of the same or lesser privilege, but not in a ring of greater privilege. All portions of the TCB are
protected from unauthorized tampering in one of the following ways:

Protection from modification—Security Kernel code and data are protected from modification by any
ring other than the Kernel itself. TSS and CASS code and data are protected from modification by
processes in any ring other than their own.

Integrity—All TCB program files, databases, and most trusted software processes are protected by
setting their integrity level high at operator level or higher. Untrusted users (subjects) are excluded
from the TCB by restricting their maximum integrity levels in the user authentication database to less
than the integrity levels of TCB objects.

Private segments—Trusted software processes protect their temporary data segments from untrusted
software by creating them as private segments. Private segments cannot be shared by other processes.
This enhances the system'’s security by isolating the processes from each other.

Secure path—Before a terminal can communicate with the TCB, the operator must strike the Secure
Attention Key to disconnect the terminal from an untrusted process. By allowing only one link at a time
between the terminal and any Ring 0, Ring 1, or Ring 2 (trusted or untrusted) process, the XTS-300
completely isolates the trusted communications path from the untrusted communications path.
(Terminals may be shared by multiple simultaneous untrusted Ring 3 [application] processes.)

Terminal Subtypes—An unlocked terminal to be used by trusted software is protected from untrusted
software by using terminal-unique device subtypes (all under the type “terminal”). When the TCB is
entered via the secure path, the secure server removes the terminal’s subtype from all untrusted
processes associated with the session before it unlocks the terminal. Access to the terminal is restored to
untrusted processes only after the operator exits the TCB.

68

MLS X.500 Directory Server System Design Document FS96-274-00

4.2.2 DSA Architecture

The DX500 OpenDirectory™ DSA, a product of Datacraft Technologies Pty Ltd, was selected in large
part because of it internal architecture. Datacraft has implemented an X.500 DSA as an integrated
relational database management system (RDBMS) appliciation while achieving efficiency and
performance through the use of a patented meta-data design and an ANSI SQL interface to an RDBMS
(in the proof-of-concept this is Trusted RUBIX). The DX500 OpenDirectory™ DSA provides all of the
hierarchical Directory Information Tree processing and object-oriented handling within its application
code, while also containing special-purpose database table designs. This design results in high-
performance, scaleable X.500 DSA application which inherits the benefits of the underlying RDBMS,
including:

caching

query optimization

replication / mirroring

recovery

house keeping and tuning utilties

The DSA design is architected to be modular, with clearly identifiable independent processing
modules, as illustrated in Figure 4-3.

DUA DSA

(DXplorer) (DX500 OpenDirectory) Database and Tools

Management and Security DX-Tools

GUI
L’ Comms | Operations | Information D

DX-API | qg—pp- | Processor | Processor Processor | .g—p» | patabase

~——

network stack object sQL
interface interface interface interface

Figure 4-3. DX500 OpenDirectory Architecture

4.2.2.1 DUA Modules

The power of X.500 is visible through the Directory User Agent (DUA). For the end user this means
using an advanced Graphical User Interface (GUI). For the application developer, it means having a
highly functional, high speed Applications Programming Interface (API). Datacraft’s DXplorer™
incorporates both the GUI and DX-API modules. These two modules are described below.

Graphical User Interface (GUI)—presents information to the user in a graphical environment and
interacts with the user using intuitive “point and click” mechanisms (described further in the next
section). It abstracts much of the X.500 jargon so that information is presented to the user in easy to use
forms and hierarchy displays. Internally it uses DXClasses which can be componentised for use in a
Delphi environment or converted to applets in the JAVA environment.

DX-API— a portable ‘C’ high performance API which gives direct access to DAP primitives. The API
is suitable for constructing embedded directory clients into office automation products, and other
network enabled applications. Underneath the API is a full OSI/RFC1006 communications stack (DAP,
ROSE, ACSE, Presentation, Session, Transport). In a Microsoft Windows Environment the APl is
implemented as a DLL and interfaces to Microsoft’s Winsock or compatible TCP/IP stack.

69

MLS X.500 Directory Server System Design Document FS96-274-00

4.22.2 DSA Processing Centres

The Directory System Agent (DSA) is highly architected and modular with clearly identifiable and
independent processing modules. The methodology uses state-of-the-art “design by responsibility”
where independent processing centres are utilised to perform complex tasks. These are briefly describec|
below.

Comms Processor—handles all communications including user protocols (DAP, LDAP), system protocols
(DSP, DISP, DOP), management protocols (CMIP, SNMP) and supporting OSI Protocols (ACSE/ROSE,
Presentation, Session and Transport). The design is characterised by high performance and efficiency,
especially in the areas of protocol coding and decoding and dynamic buffer management.

Operations Processor—co-ordinates the evaluation of X.500 services. It analyses X.500 requests, chooses
an execution strategy, checks schema rules, controls sub-operations, assembles results and handles
graceful recovery of errors or aborts. It maintains knowledge of all users and service administration
limits and can be instructed to intercept or override user controls. It also manages distribution and
replication with remote DSA’s including, chaining, referrals, knowledge management, shadowing, and
results merging.

Information Processor—responsible for data management and the efficient execution of component X.500
services. It is a highly complex module implementing the patented database design and table
management strategies. It analyses, requests, resolves aliases, decomposes filters and pre-evaluates
expressions, formulates optimal SQL queries, and processes results of queries returned from the RDBMS.
It must also cater for BLOBs (Binary Large Objects), minimise memory usage, and avoid any type of
inefficient SQL queries (e.g. ordering, aggregates, unions, nulls).

Management and Security—provides general controls, monitoring, and configuration facilities. It
supports the processing of authentication controls on users and access controls on data. The Command
Line Interface provides the administrative user with a scripting language for administrative tasks,
testing and configuration. It also provides a Layer Management Interface for the CMIP and SNMP
management protocols.

4.2.2.3 DSA Interfaces

Formal and extensible interfaces separate the major processing modules in a way that maximises
encapsulation and minimises coupling. Strict adherence to formal interfaces means that individual
processing centres can be broken apart as separate processors, or interfaced to third party products. It
also means that developers can work independently thus removing potential project bottlenecks. The
major interfaces are briefly described below.

Network Interface—provides external connectivity to the directory using any of the major networking
protocols including RFC1006, TCP/IP, UDP, and X.25. This interface could be expanded to use other
vendors stacks e.g. IPX, Netbios etc.

The Stack Interface provides a generic asynchronous multi-protocol capability to the DSA and provides
functional isolation from the protocol stacks. It allows multiple dissimilar protocol stack handlers, to
concurrently access the DSA. It is designed to allow the communications stack to be a separate process if
required.

Object Interface—provides a hierarchical object-oriented formal interface which functionally de-
couples the back-end database processing. This architecture allows the Information Processor to be a
separate process, and provides the possibility for the DX500 to provide the back-end for other vendors
products. For example, it is feasible to integrate the Information Processor with a QUIPU (a public
domain X.500) directory.

70

MLS X.500 Directory Server System Design Document FS96-274-00

SQL Interface—manages communications with the backend database. ANSI SQL has been used to
facilitate portability. It can be recompiled/linked with embedded SQL services to support any SQL
database e.g. Ingres, Oracle, Sybase etc. or even network SQL interfaces such as ODBC (Open Database
Connectivity).

4.2.2.4 Management

DX-Tools—provide utilities and data management functions such as data preprocessing, data
translation and substitution, import/export, dump/reload, update in place and merge/synchronisation.
These tools facilitate interworking with external data systems.

Administrative controls—can restrict the number of users bound to the directory, the number of
concurrent operations and the maximum size limits and time limits for a user operation.

Engineering traces and diagnostic functions—including a special summary log from which auditing,
accounting/billing and statistical information can be obtained.

Alias Integrity—the DSA can enforce alias integrity and can emulate proprietary directory behaviour
such as Quipu (the public domain X.500).

Dynamic Schema Configuration—The DSA schema supports dynamic configuration of data types,
schema rules and knowledge information. This includes extremely large data types (Binary Large
Objects or BLOBs) so that the directory can store multi-media attributes. It can transparently disconnect
and reconnect to different databases so that databases can be “hot swapped” while the directory is
running. The DSA can even start up without its database, to act as DSP relay e.g. for firewalling
applications.

CMIP and SNMP—can be used for remote monitoring.

4.2.2.5 Security
The DSA supports the following security capabilities:

Authentication

DAP name and password checking

DSP and DISP - name, password and address checking
X.500-1993 standard access controls

rules based groups

4.2.3 Detailed RDBMS Architecture
Trusted RUBIX consists of three major components, as illustrated in Figure 4-4.

1) Trusted RUBIX kernel

2) SQLengine
3) Untrusted code

71

MLS X.500 Directory Server System Design Document FS96-274-00

DX500 OpenDirectory
X.500 DSA

M

Untrusted
RUBIX Code

DAC Subset

TC8B <
_ MAC Subset

Figure 4-4. Trusted RUBIX Architecture

Trusted RUBIX implements a dual-subset architecture, wherein one subset enforces a
mandatory access control (MAC) policy on DBMS objects (i.e., tables, schemata, databases,
and tuples), and the other enforces a discretionary access control (DAC) policy.

4.2.3.1 MAC Subset and RUBIX Kernel

The MAC subset consists of the XTS-300 STOP operating system TCB and the Trusted RUBIX
kernel, which runs as a trusted subject within STOP. The MAC subset implements the Bell-
LaPadula model with databases, relations, and tuples as the system’s objects. The DBMS
functions implemented in the MAC subset are:

file management

buffer management
relation management
transaction management
trusted recovery

logging

auditing of MAC operations.

The architecture of the portion of the MAC subset that comprises the Trusted RUBIX kernel but
not the underlying TCB and hardware (hereafter referred to as RUBIX kernel) is based on the
concept of a protected subsystem in which all MAC-protected data are stored in one or more
volumes, which are single-level operating system objects. To support fine-grained multilevel
objects such as tuples, labels are attached to individual database elements within each
operating system object.

These labels are DBMS labels, not operating system labels; the operating system views these
DBMS labels strictly as data, and attaches no security significance to them. The DBMS is
trusted to properly associate and maintain the label of each item, and to correctly interpret the
labels so that, in cooperation with the operating system kernel, the security policy is correctly
enforced.

72

MLS X.500 Directory Server System Design Document FS96-274-00

The RUBIX kernel is implemented as a separate operating system process. The resources
protected by the RUBIX kernel are protected from external access by setting them to a reserved
“yser” security level. When created, processes in the RUBIX kernel will be set to this reserved
“user” security level via the STOP load_process system call. In addition, processes at this
RUBIX-specific “user” security level will be granted privileges to communicate with untrusted
processes via pseudo-ttys.

A notable characteristic of the RUBIX-specific “user” security level is that it includes a unique
category reserved for subjects and objects in the RUBIX kernel. Processes outside the RUBIX
kernel cannot have this reserved category in their labels, and thus are prevented from directly
accessing RUBIX kernel subjects and objects.

In these ways, Trusted RUBIX uses the underlying STOP mandatory access control mechanisms
to isolate RUBIX DAC subset subjects and objects from STOP subjects and objects.

The executables that make up the RUBIX kernel are MAC-protected from unathorized
modification by setting their mandatory security and integrity levels via STOP’s tp_edit utility.
In addition, all RUBIX kernel programs are installed with the appropriate stop DAC
permissions to prevent unauthorized access.

Since the RUBIX kernel is implemented as a separate process, it uses an interprocess
communication (IPC) interface. In the STOP implementation of Trusted RUBIX, this IPC
interface is provided by STOP’s IPC mechanism and pseudo-tty mechanism. Conceptually, this
IPC interface consists of a set of procedures. From the client’s point of view, all it must do to
access the services of the RUBIX kernel is to link to the library containing these procedures.
These procedures are implemented as a form of remote procedure call, with two versions of
each procedure: (1) client-side procedure that runs in the DAC subset domain, and (2) server-
side procedure that runs in the MAC subset domain.

When an initialization routine is called, the rxkernel server process is invoked, and a pseudo-tty
is established between the client and server processes for synchronous communication. When a
program calls one of the client-side access functions, the call’s arguments are collected and
passed, along with a procedure identifier, to the server side. The client procedure then blocks
and waits for a response. On the server side, a dispatcher function examines the procedure
identifier and calls the appropriate server-side procedure with the communicated arguments.
The server-side procedure validates the arguments, then performs the called function. When
this call returns, the dispatcher sends back any return values to the client procedures. The client
procedure then returns like a normal procedure call. The dispatcher then blocks, awaiting the
next request. The communication channel is brought down by a termination routine.

4.2.32 DAC Subset

The DAC subset consists of the Trusted RUBIX SQL engine. This subset depends on the MAC
subset, and implements a discretionary access policy that enforces further access restrictions
above and beyond the mandatory access policy enforced by the MAC subset. The DAC subset
implements a DAC policy on databases, schemata, relations, views, indexes, and columns. The
DBMS functions implemented in the DAC subset are:

* query parsing

* query optimization

* execution of query plans

join algorithms, sort algorithms, group-by, etc.
integrity constraints

view management

index management

audit of DAC objects.

MLS X.500 Directory Server System Design Document FS96-274-00

The architecture of the DAC subset is also based on the concept of a protected subsystem. As
with the RUBIX kernel, the DAC subset is implemented as a separate process. The DAC subset
protects its resources by using the underlying trusted STOP DAC mechanism. All DAC subset
resources including database volumes are protected from external access by making them
accessible only to subjects in a reserved operating system group called “rubixTP”. Once these
protections are in place, the underlying operating system will not allow access to the resources
unless the effective group-ID of the accessing process is rubixTP. Upon invocation of the DAC
subset, the mechanism in STOP for setting group IDs is used to set the effective group-ID of the
DAC subset process to rubixTP. This allows the process to access protected resources.

The DAC subset uses the same mechanism as the RUBIX kernel to protect its executables from
tampering with a similar IPC interface to that used in the MAC subset.

4.2.3.3 Reference Monitor
Each RUBIX TCB subset must satisfy three reference monitor requirements:

1) The reference monitor cannot be bypassed. Subjects external to the subset cannot access
protected resources without having that access mediated by the subset. The RUBIX kernel
prevents external subjects from accessing its data by labelling those data at the RUBIX-
specific “user” level. The DAC subset prevents external subjects from accessing its data by
storing them so that only members of the reserved rubixTP group can access them, and
restricting membership to the group to processes within the DAC subset.

2) The reference monitor must be tamper-resistant. Bot the RUBIX kernel and the DAC subset
use the same mechanisms to protect themselves. Since RUBIX kernel subjects and DAC
subjects run as separate processes, they are protected from tampering by the underlying
STOP process isolation mechanisms. RUBIX kernel processes have an extra measure of
protection because they run at the RUBIX-specific “user” level, and are therefore further
isolated from untrusted processes. However, because of security policy restrictions in the
underlying STOP TCB, RUBIX within STOP may have to be implemented somewhat
differently to enable interprocess communications within RUBIX.

3) The reference monitor must be small enough to be subject to analysis and tests the
completeness of which can be assured. The Trusted RUBIX MAC and DAC subsets are
designed to be modular and small enough so that correctness can be established.

4.2.3.4 RUBIX Untrusted Processes
Qutside the STOP TCB (i.e., in Ring 3 rather than Ring 2) will reside the untrusted RUBIX components.
These include:

i-sql

dynamic sql
embedded-sql
cli

client-side rda.

4.2.4 FORTEZZA I&A Design

FORTEZZA PCMCIA-ard based encryption technology and MISSI FORTEZZA software are being used
to implement strong authentication in the DX500 OpenDirectory DSA. The FORTEZZA software
(version 3.0.1), and a Spyrus PCMCIA card reader and Cryptographic Interface (CI) library (version
1.52) have been installed on the XTS-300. J.G. Van Dyke and Associates is developing a library of
interface software to provide DSA access to the appropriate authentication library functions. These, in
turn, will access information contained on the FORTEZZA card via the CI library.

74

MLS X.500 Directory Sarver System Design Document FS96-274-00

4.3 INTEGRATED SOFTWARE ARCHITECTURE

4.3.1 Directory Server Internal (Component-to-Component) Interfaces

Figure 4.5 depicts how the different CSCls will be implemented within the STOP operating system’s
four-ring architecture.

ianbirechirs FortezzalsA
Openhiieciony.. Ubrarles
RUBIX
RING 3 untrusted code
CASS

Figure 4.5. Mapping of CSCIs into STOP OS

4.3.1.1 Trusted RUBIX Interfaces
Calls to the following DX500 OpenDirectory file system directories and their contents must be modified
to replace the standard Ingres RDBMS interfaces with Trusted RUBIX interfaces:

As delivered Change to
datacraft/dsa/dip/ingres datacraft/dsa/dip/rubix
tAlias.sc, tAttr.sc, tBlob.sc, tDit.sc, thd

tEntry.sc, tInfo.sc, tName.sc, tSearch.sc,
tTne.sc, tUtls.sc

datacraft/dsa/utils/ingres datacraft/dsa/utils/rubix
setupDB.sc thd
datacraft/dsa/utils/tools RUBIX command line interface (now uses

Ingres command line interface)
dxnewdb, dxshadow, dxtunedb, dxupdate,

dxreload tbd

75

MLS X.500 Directory Server System Design Document FS96-274-00

In addition, though DX500 OpenDirectory uses ANSI standard data types, i.e. no proprietary Ingres
types, the DSA performs “sounds-like” searches using SQL pattern matching. Part of the integration
effort will involve replacing DSA calls to Ingres’ “sounds-like” capability to Trusted RUBIX’s
ANSI/XOpen standard “LIKE” operator.

4.3.12 DSA and Trusted RUBIX Security Requirements

The processes in the MLS Directory Server running on the XTS-300 STOP operating system require the
assignment of security and integrity levels, user IDs, group IDs, and permission sets. The following
diagram shows the recommended assignments of these security attributes to the MLS Directory Server
components.

HIGH SIDE LOW SIDE
(Secret) (SBU)
SL=6 SL=3
IL=2 client IL=2
UID=client (DSAESQL)) UlD=client
GID=client GID=client
RING 3
RING 2 1t SL=6 tt SL=3
Pty IL=2 started up by Pty IL=2
“start process'\
SL=6 CASS gate SL=3
IL=2 IL=2
UID=A (SOL onging)) UID=X
GID=rubixTP GID=rubixTP
OWN=client OWN=client
PRIV=integrity*property exempt PRIV=integrity*property exempt
set_grouplD set_grouplD
SL=6 SL=3
PIY 1Lz Pty 1L

SL=MAX
IL=4*
UID=rubix
GID=rubixTP

SL=MAX
IL=4*
UID=rubix
GID=rubixTP

rxmacsrvr

OWN=rubix PRIV=sec*property exempt
PRIV=sec*property exempt simple integrity exempt
simple integrity exempt
SL=min
rxserver IL=max
execu- GID=rubixTP
table
image

*client SL+1

Figure 4.6. Security Posture of DSA and Trusted RUBIX on XTS-300

76

MLS X.500 Directory Server System Design Document FS96-274-00

DEFINITIONS:

SL = security level

IL = integrity level

UID = user ID

GID = group ID

OWN = owner (owner SL=process SL)
PRIV = privileges required by process
ptty = pseudo-tty

Note that in the diagramme, the client process actually includes all processes of DX500 OpenDirectory
DSA, the FORTEZZA strong authentication processes, and the Trusted RUBIX ESQL interface. From
the Trusted RUBIX standpoint, this collection of processes form a single monolithic client process.

For the MLS Directory Server, security levels of the various processes are assigned arbitrarily based on
a two-classification level model. In other applications—or in an MLS Directory Server with more than
two classification levels, the true model is one of system high being considered at MAX security, and
system low being considered at MIN security, with a range of hierarchical security levels between MIN
and MAX assigned to classification levels between system high and system low. The same holds true of
the hierarchical integrity levels, with the understanding that the highest integrity level available

in Ring 3 is i13. In some RUBIX applications, the integrity of the client processes should be set at
different levels to ensure the inability of those processes to interfere with each other. This is not
considered a risk in the MLS Directory server, so the two client processes are both set at il2.

4.3.1.3 DSA-FORTEZZA Interfaces

The standard DX500 OpenDirectory I&A process will be modified to use the].G. Van Dyke &
Associates FORTEZZ A-based strong authentication libraries to provide strong authentication
processing on binds between the MLS Directory Server and external DUAs and DSAs. The Van Dyke
FORTEZZA 1&A software will provide the interface between the Cryptographic Interface (CI) library
on the XTS-300 and the DSA. Modifications to the DX500 OpenDirectory’s standard authentication
process will be implemented.

When the DSA is initialized, it will call msp_login to log into the FORTEZZA card and retrieve
information essential to perform validations. This log-in session will be maintained for the duration of
the DSA session. '

DAP bind authentication: During the Directory Access Protocol bind process, the DSA will recognize
the request for strong authentication and call the FORTEZZA I&A interface software. This I&A
software will validate the credentials contained in the DAP bind argument. The interface software
will ASN.1-decode the requestor’s credentials, then call msp_val_objects to perform the actual
validation. Access to the DSA’s services will be denied if the requestor’s credentials cannot be
validated.

DSP bind authentication: During the Directory System Protocol (DSP) bind process for chaining
between DSAs, the DX500 OpenDirectory DSA will request strong authentication and call the [&A
interface software to prepare the credentials for the DSP bind argument. The interface software will
ASN.1-encode the DSA’s credentials, then call msp_generic_sign to generate the necessary digital
signature. When the DSA receives the ID and credentials of the peer (external) DSA, it will ASN.1
decode those credentials and call msp_val_object to perform the actual validation.

Figure 4-7 illustrates the use of FORTEZZ A-based strong authentication by a DSA within the MLS
Directory Server.

77

MLS X.500 Directory Server System Design Documaent FS96-274-00

FORTEZZA
MSP Functions
bind dentials
DUA | /ocest DSA receives b msp_val_ob jeH
ADUA, : DAP or DSP ' e
or DSA bind request
results
DSA ‘
bind i
request DSA initiates
DSA DSP bind request
FORTEZZA|
Crypto
Interface
Functions
FORTEZZA|

Figure 4.7. DSA Integration with FORTEZZA-based Strong Authentication

4.3.2 Directory Server External Interfaces

As noted, by using the standard DX500 OpenDirectory X.500 communications protocols (DAP,
DSP), the MLS directory server will be able to communicate to external X.500 DSAs and DUAs
that also support those protocols in a standard manner (i.e., X.500-1993 compliant). Within
the MLS directory server, the “external” interface between the DSAs and the Trusted RUBIX
RDBMS will be ANSI SQL.

4.3.3 Directory Server Data Stores

The data store to be used by the MLS directory server is the Trusted RUBIX database, which will be
populated with directory information through a single-level Directory User Agent (DUA), via the
corresponding level of DX500 OpenDirectory DSA. In this way, the RUBIX database becomes the
DSA'’s Directory Information Base (DIB). During integration, attention will be paid to the
implications of having multiple DSAs use the same RUBIX database as if they “owned” it, or more
accurately, owned the portions of the database to which they are authorized access (e.g., based on
classification level).

The DSA is highly optimized to use RDBMS primary indicies, enabling it to perform very fast on any
RDBMS. Any additional tuning is provided by the RDBMS itself, in its ability to rebalance its
indicies, e.g., B-trees, after mass update. Also important is the ability of the RDBMS'’s query
optimizer to understand the distribution of data within its tables.

4.3.4 Directory Server MLS Schema Design

No schema design at the RDBMS level is required, per se. Instead, the RDBMS schema is generated by
a DSA schema translation utility, which initializes new DIT/DIBS by performing SQL CREATE
TABLE commands. Regardless of the X.500 schema contents, the SQL TABLE structure will be the same,
as the DSA is actually storing meta-data (this is an aspect of the DX500 OpenDirectory patented
design). Thus the schema design issues occur at the X.500 DIB level, not at the RDBMS level.

78

MLS X.500 Directory Server System Design Document FS96-274-00

For the proof of concept, the schema design will be kept simple for demo purposes. We will not attempt
to resolve optimal schema design issues in this project, but will recommend that these issues be resolved
in the proposed follow-on work (see Section 4.6). The draft directory schema design for this project is
attached as Appendix A of this document. This draft schema design is subject to change. In any case,
the proof-of-concept schema will be designed to support DMS data elements, though the full DMS
schema will not be implemented at this time.

4.4 CoNCEPT OF OPERATION
4.4.1 Inbound Data Flow
4.4.1.1 Lookup and Update Requests

Lookup or update requests received by the MLS Directory Server from an external DUA will be handled
at the level of the external DUA.

44.12 Chaining of Lookups and Updates

Lookup or update requests chained to the MLS Directory Server from an external DSA will be handled
at the level of the external DSA. '

4.4.1.3 Shadowing from Other DSAs

The proof-of-concept MLS Directory Server will support DISP for replication using shadowing. For
shadowing to the MLS Directory Server, the MLS Directory Server will have to authenticate the
security level of the external DSA that asks to shadow information to the MLS Directory Server.
Based on this authenticated security level, the MLS Directory Server will consider the shadowed
information as existing at the authenticated security level of the source DSA; for example, all data
shadowed from a Secret DSA will be stored at Secret in the MLS Directory Server’s multilevel DIB.

4.4.2 Outbound Data Flow

4.4.2.1 Responses to Lookup and Update Requests

Responses to lookup or update requests will be returned to the requesting DUA/DSA at the level of that
DUA/DSA. This will involve the implicit upgrading of data stored in the DIB at levels lower than
that of the requesting DUA/DSA.

4.4.22 Chaining of Lookups and Updates

Lookup or update requests that cannot be satisfied from its own (local) DIB by the MLS Directory Server
will be chained only to an external DSA(s) at the same level as the external DUA or DSA that
originated the request.

4.42.3 Shadowing to other DSAs

Directory information may be shadowed by the MLS Directory Server to external DSAs in one of two
ways:

1) Each portion (level) of information will be shadowed to an external DSA at that level; the entire
DIB will not be shadowed.

2) Each portion (level) of information will be shadowed to an external DSA whose level dominates
that of the directory information being shadowed; in this way the entire DIB may or may not be
shadowed, depending on the highest level of information in the DIB and the level of the external
DSA to which the DIB will be replicated.

79

MLS X.500 Directory Server System Design Documant FS96-274-00

See Section 4.6 for further discussion of multilevel shadowing from the MLS Directory Server.

4.4.3 DIB Storage and Retrieval

4.4.3.1 Storage of Directory Information

In response to an update request (expressed in DAP or DSP), new (or modified) data will be stored in the
MLS Directory Server’s local DIB at the level of the DUA or DSA requesting the update. As enforced
by the STOP operating system’s Security Policy, the internal DSA can bind only to external
DUAs/DSAs at its own security level. Thus all update requests handled by a particular internal DSA
will be at the level of that DSA. The Trusted RUBIX database manager will label the data entry
based on the security level of the internal DSA from which the data is received. Communication
between the internal DSA and the RDBMS will be expressed in ANSI SQL. The SQL data will be
stored with a classification label reflecting the level of the internal DSA (and, thus, the data), and all
future handling of that data will be predicated on the restrictions imposed by that classification label.

4.4.3.2 Retrieval of Directory Information

In response to a lookup request (expressed in DAP or DSP), data may be retrieved from the MLS
Directory Server's local DIB by any internal DSA at a level that dominates the level of the data. As
enforced by the STOP operating system’s Security Policy, the internal DSA can bind only to external
DUAs/DSAs at its own security level. Thus the data retrieved to satisfy any lookup requests handled
by a particular internal DSA must be dominated by the level of that DSA. Communication between the
internal DSA and the RDBMS will be expressed in ANSI SQL. The Trusted RUBIX database manager
will make its security policy decisions to release or deny release of the requested SQL data based on the
label it applied to the data when the data were stored.

4.5 LIMITATIONS OF PROOF-OF-CONCEPT

The MLS Directory Server proof-of-concept project is not intended to produce an operational-ready MLS
Directory Server, but to perform all of the integration of components necessary to form the basis for
modification/enhancement to create an operational-ready system. Several limitations of this system
are imposed by the incomplete nature of International Standards Organization (ISO) X.500 security
standards (e.g., Standard Operational Security Enhancements, currently in draft form) and ACP-133.

Other limitations are created by the draft nature of MISSI Trusted X.500 Directory Server requirements
and the embryonic nature of the DMS operation, particularly as pertains to the actual physical
operation of multiple security enclaves, i.e., will these be on physically separate system high
networks, or on a single physical network with logical system high separation based on X509 and
FORTEZZA encryption separation? It makes little sense to attempt to anticipate the DISA solution to
this problem, or to anticipate the final versions of what are currently draft standards. Thus, we have
prioritized our proposed future enhancements so that those which can be made confident that no
changes to X.500/ ACP-133 security standards, MISSI Trusted Directory Server Requirements, or DMS
operations will make such enhancements invalid or obsolete.

Due to these considerations, and some limitations of the hardware/software components of the MLS
Directory Server in their current form, the proof-of-concept MLS Directory Server has the following
limitations that must be overcome before it can be considered ready for operational deployment:

4.5.1 Classification Labels Derived from Physical, not Logical, Connections

Security labels are derived from the level of the network connection between the external X.500 object
and the XTS-300. There is no logical labelling mechanism at this stage, because it is unclear how DMS
intends to ultimately label and separate its enclaves—i.e., logically or physically.

80

MLS X.500 Directory Server System Design Document FS96-274-00

4.5.2 No Support for Multilevel Chaining of DAP and DSP Requests

Multilevel chaining, whereby requests that cannot be satisfied by the MLS Directory Server are
chained to multiple d.rectory servers at all levels dominated by the original request, is not yet
supported. This will require the development of a privileged process to reclassify and replicate the
original request so it can be distributed to multiple external DSAs, and also a process that will collect

and aggregate responses from the multiple external DSAs into a single system-high response to the
original requestor.

4.5.3 No Approach for Shadowing to Single-Level DSAs

The proof-of-concept MLS Directory Server will support DISP for replication using shadowing. For
shadowing to the MLS Directory Server, the MLS Directory Server would have to authenticate the
security level of the external DSA that asks to shadow information to the MLS Directory Server.
Based on this authenticated security level, the MLS Directory Server will consider the shadowed
information as existing at the authenticated security level of the source DSA; for example, all data
shadowed from a Secret DSA will be stored at Secret in the MLS Directory Server’s multilevel DIB.

It is unclear exactly how shadowing (replication) of information to single-level DSAs from the MLS
Directory Server would be accomplished. This is a security and operational policy issue rather than a
technical restriction, and until an approach is defined, it is difficult to implement such a shadowing
capability in the MLS Directory Server in a way that will satisfy all potential users.

4.5.4 FORTEZZA Implementation Limitations

Limitations in the MISSI FORTEZZA architecture and in the XTS-300 hardware architecture restrict
us currently to implementing a single dual-card PCMCIA FORTEZZA reader. In future releases, we
hope to support two such readers, but this will still limit the number of security levels supportable by
the MLS Directory Server to four (4)—one per card. Also, the MISSI FORTEZZA architecture
represents a potential performance bottleneck. It is hoped that the MISSI program will devise a more
performant, less limiting solution, such as a FORTEZZA card “bank” or a software-based FORTEZZA
solution that can be used in high-assurance systems. Until such restrictions are resolved, the number of
different levels of data that can be stored in the MLS Directory Server will be limited by the number of
FORTEZZA cards it can accommodate.

4.5.5 No Support for not-yet-Finalized X.500 Standard Security Enhancements

ACP-133 and X.500 Standard Security Enhancements have not been implemented, as both standards are
still in draft form. Many features under consideration for ACP-133 are being targeted at the X.500-1997
standard. It is our intention to obtain these enhancements from Datacraft in future releases of their
standard DX500 OpenDirectory product, and not to have to implement them ourselves, if possible.

4.5.6 Strong Authentication Limited to Binds; no Authentication of Operations

Strong authentication is currently the only security policy checking performed to validate the
permissions of the external DSA or DUA. It is presumed that a DSA or DUA who provide the necessary
credentials to allow them to bind to the MLS Directory Server’s internal DSA should be permitted to
perform whatever directory operations they attempt—the only restriction being that the MLS
Directory Server will enforce the separation of permissions between DUAs and ADUAs (i.e.,
authenticated DUAs will only be allowed to perform lookups; authenticated ADUAs will be allowed
to perform lookups and updates). Beyond this, no security policy filtering of individual DSP and DAP
requests is performed, nor is an external directory system’s permission to perform any specific directory
operation validated (beyond the DUA “lookup only” restriction). This kind of security policy filtering
is expected to be developed by the MISSI program for the DMS Guard and Secure Network Server.
When these security policy filters are developed, we propose to implement them in the MLS Directory
Server to increase its utility and security policy enforcement capabilities, in essence having it serve
“double duty” as a DSA and an X.500 Guard.

81

MLS X.500 Directory Server System Design Document FS96-274-00

4.5.7 Limited Directory Schema Implementation

There are three basic approaches to the design of an MLS directory schema, each with its own
sotential problems. The simplest approach is to create two separate schema trees, one Sensitive-but-
Unclassified and the other Secret. This is how the schema in the Proof-of-Concept is implemented, but
is impractical for an operational directory as it will doubtless entail much replication of data in both
trees, with the only differences between trees caused by data unique to the particular tree’s
classification level.

We propose to study the schema design alternatives, including the security and performance challenges
posed by each, and redesign the MLS Directory Server DIB schema in accordance with the best choice.
However, even resolving these issues will not solve the problem completely, as the current DMS X.500
Directory Baseline Schema, 23 February 1996, presumes a schema at a single classification level, rather
than a schema that will accommodate directory information at multiple classification levels. Until
the DMS program designs a directory schema for MLS DIBs, any schema redesign work in our MLS
Directory Server will necessarily be guess-work in anticipation of an updated or alternative MLS DMS
Directory Schema.

4.6 PROPOSED ENHANCEMENTS TO PROOF-OF-CONCEPT

We propose to begin implementing the following short-term enhancements immediately upon
completion of the proof-of-concept development efforts. Implementation of these enhancements will
provide the functionality required for the MLS Directory Server “operational-ready”, i.e., ready to
function in an operational environment such as the DMS, and ready to be accredited for operation in
such an environment. Short-term enhancements will not include those which rely on the finalization of
international or U.S. X.500 standards, or the publication of U.S. MLS Directory Server Requirements.
The enhancements to satisfy these standards and requirements are addressed in Section 4.5.3, “Longer-
Term Enhancements”. It is possible that standards/requirements may be finalized soon enough for their
implementation in the MLS Directory Server to be completed before some of the short-term
enhancements. What is meant, then, by “short term” and “longer term” in this context is the relative
start date for the enhancement, not the completion date.

4.6.1 Proposed Short-Term Enhancements

4.6.1.1 Implement Multilevel Chaining to External DSAs

In the proof-of-concept, chaining is supported only at the security level of the DUA request which the
MLS Directory Server must chain to another DSA to fulfill. This means that to fulfill a SECRET
DUA'’s lookup request, the MLS Directory Server will only chain to a SECRET external DSA, even if
the information required by the requesting SECRET DUA actually exists on a lower-level DSA.

To support chaining from the MLS Directory Server to external DSAs operating at multiple security
levels, we propose to integrate and/or develop a privileged process that will enable the MLS Directory
Server to chain a request onward to multiple DSAs at each security level dominated by the originator
of the request (DSA or DUA). Thus, to fulfill to a SECRET DUA request, the MLS Directory Server
would not only chain to an external DSA at the SECRET level, but also to additional external DSAs at
the Confidential and Sensitive Unclassified levels, and at the Unclassified level, if security policy
permits.

In the first phase, we will address the chaining of lookup requests. In the second phase, we will
consider the security implications of chaining update requests at multiple levels, as allowing such
multilevel update chaining would run contrary to the “write only at same level” policy enforced by the
MLS Directory Server itself. If it is determined that supporting multilevel update chaining is
acceptable, we will extend the capability of the privileged process developed for multilevel lookup
chaining to support it.

82

MLS X.500 Dirsctory Server System Design Document FS96-274-00

4.6.1.2 Analyze and Implement Options for Two-Way DSA Shadowing Capability

We propose to analyze the options for supporting two-way DSA shadowing from the MLS Directory
Server to single-level DSAs, and to document the most logical shadowing security policies. For
example, the MLS Directory Server could limit its shadowing of data to data at the same security level
as the subscribing single-level DSA; for example, a subscribing SBU DSA would receive only data that
exists at the SBU level in the MLS Directory Server. This would be approaching shadowing as an
update, i.e., enforcing the MLS Directory Server’s security policy of updating only at the same level as
the external DSA (to which the data are being shadowed). Alternatively, shadowing operations could
be treated in the same way as lookup operations, with the MLS Directory Server satisfying a given
shadowing request by shadowing information stored in its MLS DIB at all levels dominated by the
external DSA. In this way, an SBU DSA would receive (via DISP) only data stored in the MLS DIB at
SBU, but a Secret DSA would receive data stored at SBU, Restricted, Confidential, and Secret, with
the lower levels of data essentially upgraded to Secret by the same Trusted RUBIX implicit upgrade
process used to satisfy lookup requests from higher-classified DSAs and DUAs.

Once the logical options are defined, we then propose to implement whatever trusted processes or
configuration controls are necessary within the MLS Directory Server to enable it to be configured to
support each of the recommended options, allowing user organizations to take the final decision as to
which option best suits their operational environment.

We also propose to resolve the issue of shadowing between the MLS Directory Server and other MLS
DSAs. In this scenario, multiple associations may be required to distribute information from the MLS
Directory Server and the subscribing MLS DSA at only the classification levels supported by the
subscribing DSA

While inbound shadowing to the MLS Directory Server is not considered a problem, as data shadowed
from an external single-level DSA would be considered to all be at the same level (the level of the
DSA), and would be stored in the MLS Directory Server at that level, this does not address the issue of
actual security levels of data stored in system-high directories; the MLS Directory Server can only be
expected to work with trusted labels (see x.3.2.7) to determine the classification of incoming data. In
the current system-high enclave DMS environment, the MLS Directory Server cannot to expected to be
able to distinguish the actual levels of incoming data stored in system-high systems; it can only discern
the level of the system-high network from which those data are received.

4.6.1.3 Prototype a MLS DMS Schema Design

The current DMS Schema does not currently address multilevel objects, but presumes objects all at one
security level. For the MLS Directory Server to implement the DMS Schema, security labels will have
to be assigned to objects and attributes in the current single-level Schema. We propose to determine the
most likely security labels for various types of data in the DMS schema, and to undertake a prototype
Schema object and attribute labelling effort, to provide a working prototype of an MLS DMS Schema.
The other part of this prototype effort will be to analyze several alternatives to designing an MLS
Directory Schema. In our analysis, we will prototype at least the following: (1) single complex
directory tree with both low and high branches (Figure 4-8) and (2) a single system-low tree with
multiple leveled values of attributes stored at various places on the tree (Figure 4-9). These prototypes
will help us determine which approach is the least problematical, understanding that both
approaches present problems in moving up and down the tree, from low to high, which, depending on
the operation taking place (read or write), will require violation of the Bell-LaPadula security. We

propose to resolve such security issues in designing and prototyping the optimal MLS DMS schema for
the MLS Directory Server.

83

MLS X.500 Directory Server System Design Document F$96-274-00

C=US

QOU=locations OU=locations

L=NCTSW LaSanDiego :
L=Ft.Maada

QU=X QUG
Sensitlve-but-

Unclassified : Secret

Figure 4.8. Multilevel Directory Tree

attribute x attribute3 attribute2 attribute
/ N\

TYPE valuel Unclassifled

value2 Secret

value3 Unclassifled

Figure 4.9. Schema with Multivalued Attributes

The potential problem with both of these approaches is in moving up and down the tree, from SBU to
Secret, which, depending on the operation taking place (read or write), will be in violation of the Bell-
LaPadula security model enforced by the RDBMS. We propose to resolve such security issues in
designing and optimal schema for the MLS Directory Server that will satisfy DMS and other MLS
directory schema requirements.

4.6.1.4 Prototype Security Labels Based on Logical Connections

For the proof-of-concept, each physical network—and all systems on that network—connected to the
XTS-300 is presumed to be operating at single security classification level. The security label to be
recognized by the MLS X.500 Directory Server for each external DUA and DSA on a particular physical
network will be derived from the level of that physical network. This limitation is imposed by the
current DMS architecture, with its system-high enclaves and lack of security labelling of data.

84

MLS X.500 Directory Server System Design Document FS96-274-00

We propose to prototype a mechanism for applying logical security labels to the X.500 data flowing
over a physical connection, possibly using ACP-133 combined with X.509 certificates and FORTEZZA
encryption support to create a trustworthy mechanism for security labelling of X.500 data. This
prototype mechanism will be used to strongly authenticate and track the security level of the logical
connection for the duration of the association between the MLS Directory Server and the external DUA
or DSA.

This kind of logical security labelling will enable the MLS X.500 Directory Server to operate
environments such as that envisioned for the future DMS, wherein multiple security levels of data are
transmitted over the same SBU physical network, with separation by cryptographic (and possibly
other) means.

After prototyping a mechanism for logical labelling of X.500 data, we propose to implement a
privileged process in the MLS Directory Server for reading the logical label information and taking
security policy decisions for distribution/handling of the multilevel data within the Directory Server
based on the logical label, instead of the physical network label which the logical label will override.
We will also develop a means of preserving the logical label on both inbound and outbound DSP, DOP,
and DISP communications for the duration of the chaining or shadowing association (bind) between the
MLS Directory Server and external DUAs/DSAs.

4.6.15 Implement MISSI Protocol Filtering, Dirty Word Scans, etc.

As Wang, under contract to the NSA MISSI program, implement the DAP, DSP, DISP, and DOP
protocol filters for the DMS X.500 Guard (over the next 12 months), we propose to implement the same
filters within the MLS Directory Server to ensure that any requests travelling between DMS enclaves
via the MLS Directory Server have been verified to conform to MISSI standards for such interenclave
X.500 exchanges. Once these filters are implemented, the MLS Directory Server could provide an
alternative to the Secure Network Server or DMS Guard. We feel that the current DMS/MISSI
architecture’s multiplicity of single-level enclaves served by single-level DSAs and interconnected via
X.500 Guards will ultimately lead to an overcomplexity of directory, security, and network
management requirements. By incorporating guard capabilities into the MLS Directory Server, we can
create an alternative to the need for separate single-level DSAs and interenclave guards, in essence
replacing multiple guards and DSAs with a single NSM running the MLS Directory Server,
significantly reducing management overhead in terms of personnel and complexity.

4.6.2 Proposed Longer-Term Enhancements

4.6.2.1 Features to Satisfy MISSI MLS DSA Requirements

As these requirements are finalized by the NSA’s X33 group, we propose to develop an implementation
plan, design, schedule and level-of-effort scoping for phased implementation of features to meet those
requirements. In cases when providing such features requires modification of the standard DX500
OpenDirectory DSA, Wang will work with Datacraft Technologies (the DSA provider) to provide this
implementation plan, design, and schedule/scoping.

4.622 ACP-133
When the international ACP-133 standard is finalized, we will define any ACP-133 capabilities
required by the US (e.g., DMS) and not supported in the international DX500 OpenDirectory

implementation, and work with Datacraft to scope the effort of implementing the DMS/US-unique
features.

4.6.2.3 X.500 Standard Operational Security Enhancements

There is currently under review in the X.500 community a set of Draft Amendments (DAMs) to the ISO
X.500 Standard Support Enhancement of Directory Operational Security. These enhancements include:

85

MLS X.500 Directory Server System Design Document FS96-274-00

1
2)
3)
4)
5)

Integrity of stored data based on digital signatures;
Confidentiality of stored data based on encryption;
Auditing facilities;

Rules-based access control;

Context-based access control.

As these DAMs become stable, we propose to develop an implementation plan, design, schedule and
level-of-effort scoping for phased implementation of features not already planned for the standard
DX500 OpenDirectory DSA, Wang will work with Datacraft Technologies (the DSA provider) to
provide this implementation plan, design, and schedule/scoping.

86

MLS X.500 Directory Server System Design Document FS96-274-00

5. PROCESSING RESOURCES

Because it is designed to run on the XTS-300, the MLS Directory Server will be constrained, to some
extent, by the processing resources available on that system. This said, we anticipate demonstrating
the proof-of-concept system on the new XTS-300 Model 3P1, which has the following system resources:

133MHz Pentium CPU

32MB memory

1 GB hard drive

2 Ethernet connections

dual PCMCIA (FORTEZZA) card reader

If necessary, memory, disk space, and network connections can be increased, though for the proof-of-
concept, we do not anticipate this being necessary. One of the benefits, in terms of resource utilization,
of the DX500 OpenDirectory architecture is that it does not load into memory, as do ISODE-based X.500
DSAs, but instead inherits the RDBMS’s disk-oriented resource utilization. In this way, the MLS
Directory Server will minimize memory requirements when compared with many other single-level
DSA products, which require large amounts of memory to load the entire directory, and are thus
constrained in the number of directory entries they can support.

As the future operational MLS Directory Server is daveloped, the XTS-300 is also being enhanced
further to support multiprocessing (multiple CPU-ccnfiguration). In addition, a 166MHz CPU is also
being tested, as is the ability to support multiple PCMCIA readers.

Performance and resource utilization data for the DX500 OpenDirectory running against an Ingres
database in a Sun SPARC environment can be made available upon request. Performance and resource
utilization data for the XTS-300 (running FTP file transfers) and Trusted RUBIX can also be requested,

but will be of questionable relevance when trying to anticipate proof-of-concept resource utilization and
performance expectations.

87

APPENDIX C

MLS X.500 Initial Directory Schema

88

schema set attribute dms-attr:2 = {
name = dmsCreateTimeStamp
syntax = uTCTime
single-valued

h

schema set attribute dms-attr:3 = {
name = dmsAlternateRecipient
syntax = distinguishedName

X

schema set attribute dms-attr:4 = {
name = dmsAssociatedOrganization
syntax = distinguishedName

h

schema set attribute dms-attr:5 = {
name = dmsAssociatedMI
syntax = distinguishedName

%

schema set attribute dms-attr:6 = {
name = dmsAssociatedPLA
syntax = distinguishedName

h

schema set attribute dms-attr.7 = {
name = dmsNDNPolicy
syntax = dmsNDNPolicySyntax # NDNPolicy
single-valued

X
NDNPolicy ::= ENUMERATED {OWNER(0), ORIGINATOR(1), BOTH(2) }

schema set attribute dms-attr:8 = {
name = dmsMIType
syntax = dmsMIiTypeSyntax
single-valued

|5
dmsMITypeSyntax = ENUMERATED {AIG(0), TYPE(1), CAD(2), TASKFORCE(3)}

schema set attribute dms-attr:9 = {
name = dmsPlaName
syntax = caselgnoreString
single-valued

h

89

schema set attribute dms-attr:11 = {
name = dmsPlaTAREFlag
syntax = boolean
single-valued

¥

schema set attribute dms-attr:13 = {
name = dmsPlaMinimizeOverrideFlag
syntax = boolean
single-valued

h

schema set attribute dms-attr:14 = {
name = dmsPlaSectionFlag
syntax = boolean
single-valued

h

schema set attribute dms-attr:15 = {
name = dmsPlaDualRouteFlag
syntax = boolean
single-valued

schema set attribute dms-attr:16 = {
name = dmsPlaServiceOrAgency
syntax = caselgnoreString
single-valued

X

schema set attribute dms-attr:17 = {
name = dmsPlaPublishFlag
syntax = boolean
single-valued

J

schema set attribute dms-attr:19 = {
name = dmsDodaac
syntax = caselgnoreString

%

schema set attribute dms-attr:20 = {
name = dmsPlaExpirationDate
syntax = uTCTime
single-valued

X

schema set attribute dms-attr:21 = {
name = dmsPlaLongTitle
syntax = caselgnoreString
single-valued

X

90

schema set attribute dms-attr:22 = {
name = dmsPlaRlinfo
syntax = dmsRIParametersSyntax # RIParameters

h

RIParameters ATTRIBUTE-SYNTAX

SET {

routinglndicator [0] Routingindicator,

rType [1] RIType,

riDeliveryPreference {2] DeliveryPreference,

minimizeFlag [3] BOOLEAN,

sHD (5] SpecialHandlingDesig,

RiClassification [6] DestinationClassification)
#

Routinglndicator ::= PrintableString (SIZE(7))
RIType ::= PrintableString (SIZE (1))
(FROM ("N" - normal - |

"0" - offline - |

"P" - part time terminal - |

"A" - ADI -))

Classification ::= PrintableString (SIZE (1))
(FROM ("S" - secret - |
"C" - confidential - |
"R" - restricted - |
"E" - unclassified EFTO - |
*U" - unclassified -))

DestinationClassification ::= PrintableString (SIZE (1))
(FROM "T" - top secret - |
"S" - secret - |
"C" - confidential - |
"R" - restricted - |
"E" - unclassified EFTO - |
*U" - unclassified -))

oI I o M3 KN

SpecialHandlingDesig ::= PrintableString

schema set attribute dms-attr:23 = {
name = dmsPlaActionAddresses
syntax = caselgnoreString

b

schema set attribute dms-attr:24 = {
name = dmsPlalnfoAddresses
syntax = caselgnoreString

X

91

schema set attribute dms-attr:25 = {
name = dmsPlaCognizantAuthority
syntax = caselgnoreString
single-valued

b

schema set attribute dms-attr:26 = {
name = dmsPlalLastRecapDate
syntax = uTCTime
single-valued

3

schema set attribute dms-attr:27 = {
name = dmsPlaRecapDueDate
syntax = uTCTime
single-valued

X

schema set attribute dms-attr:28 = {
name = dmsPlaEffectiveDate
syntax = uTCTime
single-valued

b

schema set attribute dms-attr:29 = {
name = dmsPlaAllowableOriginators
syntax = caselgnoreString

h

schema set attribute dms-attr:30 = {
name = dmsOwningCountry
syntax = printableString
single-valued

¥

schema set attribute dms-attr:31 = {
name = dmsPlaRemarks
syntax = caselgnoreString

h

schema set attribute dms-attr:35 = {
name = dmsPlaStateName
syntax = caselgnoreString

b

schema set attribute dms-attr:36 = {
name = dmsPlaProvinceName
syntax = caselgnoreString

%

92

schema set attribute dms-attr:37 = {
name = dmsPlaRegionName
syntax = caselgnoreString

b

schema set attribute dms-attr:38 = {
name = dmsPlaEntryClassification
syntax = dmsClassificationSyntax # Classification

b

schema set attribute dms-attr:39 = {
name = dmsPlaNameClassification
syntax = dmsClassificationSyntax # Classification

h

schema set attribute dms-attr:40 = {
name = dmsPlaMinimize
syntax = boolean

b

schema set attribute dms-attr:41 = {
name = dmsPrimarySpelling
syntax = caselgnoreString
single-valued

|3

schema set attribute dms-attr:42 = {
- name = dmsPlaReplaceFlag
syntax = boolean
single-valued

b

schema set attribute dms-attr:43 = {
name = dmsHostOrganizationalPLA
syntax = caselgnoreString
single-valued

b

schema set attribute dms-attr:45 = {
name = dmsReleaseAuthorityName
syntax = caselgnoreString

%

Object Classes
schema set oid-prefix dms-objectClass = (2.16.840.1.101.2.2.3);

schema set object-class dms-objectClass:0 = {
name = dmsEntry
subclass-of top
#must-contain createTimeStamp

93

schema set object-class dms-objectClass:1 = {
name = dmsSMTPUser
subclass-of top
may-contain
cosineRfc822Mailbox
3

schema set object-class dms-objectClass:2 = {
name = dmsPOCOrganizationalUnit
subclass-of organizationalUnit # mhs-user, dmsSMTPUser,
msp-user-sdns, msp-user-mosaic
must-contain
dmsPreferredDelivery,
dmsOwningCountry
may-contain
dmsAssociatedPLA,
dmsAlternateRecipient,
dmsBackpointers

J

schema set object-class dms-objectClass:3 = {
name = dmsPOCOrganizationalPerson
subclass-of organizationalPerson # mhs-user, dmsSMTPUser,
msp-user-sdns, msp-user-mosaic
must-contain
dmsPreferredDelivery,
dmsOwningCountry
may-contain
dmsAssociatedOrganization,
dmsAlternateRecipient,
dmsBackpointers

b

schema set object-class dms-objectClass:4 = {
name = dmsM|
subclass-of dmsSMTPUser # msp-user-sdns, mhs-user,
msp-user-mosaic, mail-list
must-contain
commonName,
mhsDLSubmitPermissions # mhs-dI-submit-permissions
may-contain
dmsNDNPolicy,
dmsMIType,
description,
dmsBackpointers,
dmsAlternateRecipient

X

schema set object-class dms-objectClass:5 = {
name = dmsMLA
subclass-of applicationEntity

h

94

schema set object-class dms-objectClass:6 = {
name = dmsCertificationAuthority
subclass-of dmsSMTPUser # ca-mosaic, ca-sdns,
organizationalRole, mhs-user,
msp-user-sdns, msp-user-mosaic
must-contain
dmsPreferredDelivery
may-contain
dmsBackpointers

%

schema set object-class dms-objectClass:7 = {
name = dmsADIGateway
subclass-of applicationEntity # msp-user-mosaic, mhs-user
may-contain
cosineHost

|3

schema set object-class dms-objectClass:8 = {

name = dmsPla

subclass-of top

must-contain
dmsPlaName,
dmsPlaServiceOrAgency,
dmsPlaPublishFlag,

#dmsPlaEffectiveData,

dmsOwningCountry

may-contain
dmsPlaExpirationDate,
dmsPlaRemarks

|5

schema set object-class dms-objectClass:9 = {
name = dmsOrganizationalPLA
subclass-of dmsPla
must-contain
dmsPlaMinimize,
dmsPlaSectionFlag,
dmsPlaDualRouteFlag,
dmsPlaMinimizeOverrideFlag,
dmsPlaTAREFlag
may-contain
dmsPlaNameClassification,
dmsPlaEntryClassification,
localityName,
dmsPlaStateName,
dmsPlaProvinceName,
dmsPlaRegionName,
countryName,
dmsPlalLongTitle,

95

dmsDodaac,
dmsPlaRiinfo,
dmsAssociatedOrganization

J¥

schema set object-class dms-objectClass:12 = {
name = dmsReleaseAuthority
subclass-of top
must-contain
dmsReleaseAuthorityName
may-contain
mosaicKMandSigCertificate
sdnsUserSignatureCertificate - unknown attribute

b

schema set object-class dms-objectClass:13 = {
name = dmsPlaCollective
subclass-of dmsPla
must-contain
dmsPlaCognizantAuthority,
dmsPlaLastRecapDate,
dmsPlaRecapDueDate
may-contain
dmsPlaEntryClassification,
dmsPlaActionAddresses,
dmsPlalnfoAddresses,
dmsPlaAllowableOriginators,
dmsAssociatedM|

h

schema set object-class dms-objectClass: 14 = {
name = dmsComputer
subclass-of device

%

schema set object-class dms-objectClass:15 = {
name = dmsOS|Gateway
subclass-of applicationEntity # mhs-user, msp-user-mosaic
may-contain
cosineHost

h

schema set object-class dms-objectClass: 16 = {
name = dmsAliasOrganizationalUnit
subclass-of alias
must-contain
organizationalUnitName

96

schema set object-class dms-objectClass:17 = {
name = dmsAliasOrganizationalPerson
subclass-of alias
must-contain
commonName

X

schema set object-class dms-objectClass:18 = {
name = dmsAliasOrganizationalRole
subclass-of alias
must-contain
commonName

b

schema set object-class dms-objectClass: 19 = {
name = dmsAliasMI
subclass-of alias
must-contain
commonName

h

schema set object-class dms-objectClass:20 = {

name = dmsTaskForcePLA

subclass-of dmsPla

must-contain
dmsPlaCognizantAuthority,
dmsPlalLastRecapDate,
dmsPlaRecapDueDate

may-contain
dmsPlaEntryClassification,

dmsPlaAddresses,

dmsAssociatedMI

X

schema set object-class dms-objectClass:21 = {

name = dmsTenantPLA

subclass-of dmsPla

must-contain
dmsHostOrganizationalPLA

may-contain
dmsPlaEntryClassification,
dmsPlaTAREFlag

b

schema set object-class dms-objectClass:22 = {
name = dmsAlternateSpellingPLA
subclass-of dmsPla
must-contain
dmsPlaReplaceFlag,
dmsPrimarySpelling

97

schema set object-class dms-objectClass:23 = {

name = dmsCadPLA

subclass-of dmsPla

must-contain .
dmsPlaCognizantAuthority

may-contain
dmsPlaEntryClassification,
dmsAssociatedM|,
dmsPlaRlinfo,
dmsPlaRecapDueDate

¥

schema set object-class dms-objectClass:24 = {
name = dmsPOCOrganizationalRole
subclass-of
organizationalRole # mhs-user, dmsSMTPUser, msp-user-sdns,
msp-user-mosaic
must-contain
dmsPreferredDelivery,
dmsOwningCountry
may-contain
dmsAlternateRecipient,
dmsBackpointers

98

APPENDIX D

MLS X.500 Directory Test Plan
and
Demonstration Scenarios

99

Wang X.500 MLS Directory Test Plan

1.0 Introduction

The U.S. and Allies are migrating to the use of open systems solutions based on international standards
for their messaging, network management, and document interchange systems. Within the U.S., the DoD
is in the process of developing a single messaging system for all individual and organizational
messaging.. This system, the Defense Messaging System (DMS) is based on the use of the X.400
Message Handling System combined with the Secure Data Network System (SDNS) Message Security
Protocol (MSP),and the X.500 Directory System protocols. The combination of these technologies will
provide the DoD with messaging, security and Directory services necessary to implement global
messaging capabilities. The X.500 Directory System provides an integral part of the DMS solution's
infrastructure by providing a place to store and distribute addressing and security informaton.

Currently, the DMS solution addresses the Unclassified-But-Sensitive (SBU) environment. As DMS
evolves to address the secret and top-secret environments, the storage, distribution. and maintenance of
classified information becomes a large problem. This document describes test steps that can be used to
validate the implementation of the Multi-Level Secure (MLS) X.500 Directory Service running on the
Wang XTS-300 trusted platform and holding data at different levels of security classification in a RUBIX
trusted MLS data base.

2.0 Test Environment

. Appliéaﬁon Operating System Hardware
Software
MLS Directory STOP 4.3.1 XTS-300
Server

e 133 Mhz Pentium

e 64 MB RAM

¢ 1GB Hard Drive

e (2) Fortezza Readers
DX500 DSA SUNOS 4.1.3 SPARCstation-10

e 32 MB Ram

e 2 BG Hard drive

s External
FORTEZZA

DX Explorer DUA Windows 3.11 Intel Pentium

s 133 Mhz CPU

o 64 MB RAM

s 2 GB Hard Drive

¢ External Fortezza

100

3.0 Test Plan
2.1 Datacraft port

The Datacraft port to the Wang XTS-300 can be tested prior to integrating the RUBIX database by
chaining to a second DSA that contains a database. This step will be done using the Datacraft
implementation on jg_sun2. This tests that DSP is working correctly on a single security level.

DAP can be tested by using any available DUA to query the Directory connecting to the Wang and
chaining to the information on the sun.

Access control should be tested by populating the Directory with a small portion of the DMS schema and
setting ACI information to allow different administrators control over different portions of the data. For
instance one administrator should have control over adding in new entries, but a second should have
control of the security information. This will simulate the environment of a CAW vs ADUA.

2.2 Fortezza integration

If a DUA that does strong authentication can be located, this can be used to test the DAP Bind using

strong authentication. If not, VDA will have to add strong authentication to a test engine or to another
DUA.

Strong authentication between DSAs will be tested by configuring two copies of the Datacraft DSA to

chain with each other. Again the Datacraft can be put on jg_sun2 and on the Wang, or multiple copies of
the DS A can be run on the Wang.

2.3 Rubix

Once the RUBIX data base is ported, information can be stored on the Wang and accessed using DAP
from any DUA.

The MLS Directory will be configured to be able to chain to two single security level DSAs, one
containing SBU data and the other containing only Secret data. The MLS Directory will use different
physical network connections to determine the security level of the chained DSA.

Multiple users will access the MLS DSA, in order to show that all access controls work properly for the

correct level of authentication. DUAs with administrative capabilities as well as lookup capabilities will
be required to demonstrate access controls as well as separation of security classifications.

101

Ported Datacraft

DSP

102

SBU DSA

[\

/A \ B\

Secret DSA

=N

R\

Demo Scenarios

Directory users Access privileges Security level
ADUAL administrative access to SBU SBU
data, excluding security
information
CAW/ADUA1 administrative access to security | SBU
information for SBU users
ADUA2 administrative access to SECRET | SECRET
data including security
information
DUA1 SBU user data SBU
DUA2 SECRET user data SECRET
DUA3 outsider should not get access at all
Scenario 1

DUA3 attempts to bind to the MLS DSA using each of the addresses sequentially for the unclassified, and
SECRET DSA.

Each attempt should result in a BIND error
Scenario 2

DUA1 attempts to bind to the MLS DSA using each of the addresses sequentiaily for the SBU and
SECRET DSA.

The bind to the SBU DSA should succeed and DUAL should be able to browse through the SBU portion of
the directory seeing only user data.

The bind to the SECRET DSA should result in a bind error.

Scenario 3

DUA2 attempts to bind to the MLS DSA using each of the addresses sequentially for the SBU and
SECRET DSA.

The bind to the SECRET DSA should succeed and DUA2 should be able to browse through the SECRET
portion of the directory seeing only user data.

The bind to the SBU DSA should result in a bind error.

Scenario 4
ADUALI adds a new user, tries to add security information and gets an access control violation.

CAW/ADUA]1 adds the security information to the new user ADUAT just added.
CAW/ADUAL attempts to add a second new user and gets an access control violation.

103

Scenario 5

Having successfully done a bind under Scenarios 2 and 3, both DUA1 and DUAZ2 should browse through
the directory looking at whatever information they can. Each user should see different data depending on
their security level.

Browsing the Directory Information Tree should seamlessly allow each user to access data on a second
DSA. Each user should only see chained information at their own security level.

Scenario 6

DUA1 attempts to read a specific directory entry for a SECRET user. This could be accomplished by
attempting to read using the Distinguished Name for the entry containing information about DUA2.

Attempt should fail with an access control error.
Scenario 7

DUA2 attempts to read a specific directory entry for an SBU user. This could be accomplished by
attempting to read using the Distinguished Name for the entry containing information about DUAL.

Attempt should fail with an access control error.
Scenario 8

ADUAZ2 adds a new user and his security information.

104

The following type of information will need to be configured for each of the DSAs used in the
demonstration scenarios.
Configuration Information:

jg_sun2:
stack set config = { # startup STACK

p-addr = { psap = "PP" # dap PSAP
ssap = "SS" # absent means any
tsap = "TT" # absent means any

nsap = rfcl006 "158.189.4.100" port 1500 # zeros mean
this host
}

dsp-psap = "DSP"

cmip-psap = "CMIP"

ldap-port = 1901

snmp-port = 1902

Y

dsp set remote-dsa = {
name = "root"
p-addr = { psap = "DSp"
nsap = rfcl006 "158.189.4.104" port 1900 }
max-idle-time = 60 }

wang:
stack set config = ({ # startup STACK
p-addr = { psap = "PP" # dap PSAP
ssap = "SsS" # absent means any
tsap = "TT" # absent means any
nsap = rfcl006 "158.189.4.104" port 1900 # zeros mean
this host

}
dsp-psap = "DSP"

cmip-psap = “CMIP"
ldap-port = 1901
snmp-port = 1902

Y

dsp set remote-dsa = {
name = "sun"
prefix = <countryName "AU">
p-addr = (psap = "DSP"
nsap = rfcl006 "158.189.4.100" port 1900 }
max-idle-time = 60 }

105

APPENDIX E

Datacraft DSA/Trusted RUBIX
File Listings

106

Sep 16 15:56 1997 liscing.3

[
% anly file on tape
’

~rwerw-r-- 1 154 s6

paga 1

32088064 Jec 7 15:07 1996, rick_rubix.tar

[]
® contained w/i rick_rubix.car
L3

DATACRAFT DSA/Trusted RUBIX
SUNO0S 4.1.3

/dsa.c
a ../version.c

e
/verajion.e

. ./support/pack-fp/Ater_f.e
. ./support/pack-fp/Auth_i.c

./support/pack-fp/Mrs_i.c
«/../supporc/pack-~fp/Rupper_i.c
./ support/pack-£o/Syx_i.¢

./ support/pack/pAter.a

/support/pack/pMHS.c
. ./support/pack/pSyntax.c

«+/../oper/scackif/scackGluei.c

«o/../include/Ater.y
../../include/Auth.h

../stack/include/DapDsp. i
../scack/include/Oapasn.h

~fw-rwera=154/50 0 Aug 16 08:55 1996 START
~owxrwer-x154/50 0 Sep 17 17:22 1996 dsa/s
-twxruxz-x154/50 0 Aug S 04:14 1996 dsa/dsa/
~rwxrwxr-x154/50 0 Sep 17 1 4 1996 dsa/dsa/rfecl00§/
Lowxrwaxwx154/50 8 Aug 16 0 2 1996 dsa/dsa/rfcl006/dsa.c symbolic link %o ..
1 rrwrzwxl154/50 12 Aug 16 0 2 1996 dsa/dsa/rfcl006/version.c symbolie link t
~rw-rw-r--154/50 920 Aug 26 1 6 1996 dsa/dsa/rfcl006/Makatile
~rw-rw-rw-154/50 2205 Sep 17 17:14 1996 daa/dsa/rfcl006/.make.scate
-tw-rw-r~=154/50 84660 Aug 27 1 2 1996 dsa/dsa/rfcl006/dsa.o
-rw-rw-c==154/50 2556 Aug 27 18:02 1996 dsa/daa/rfcl006/version.o
arw=Tw-r-=154/50 464 Aug 27 18:03 1996 dsa/dsa/rfcl006/.nse_depinto
~twerw-r--154/50 1145 aug 21 1 6 1996 dsa/daa/Makefile

r-=154/50 13443 Jul 17 08:52 1996 dsa/dea/dsa.c

r--154/50 118% aug 5 O 0 1996 dsa/dsa/version.c
-rwxrwxr-x154/50 0 Aug 27 17:30 1996 dsa/dsa/tecp/

Lrwxrvxxwxl154/50 & Aug 16 08:52 1996 dsa/dsa/tep/dsa.c symbolic link to ../dsa
Lrexrvxrwxl54/50 12 Aug 16 08:52 1996 dsa/dsa/tcp/version.c symbolic link %o ..
682 Jul 16 22:20 1396 dsa/dsa/tcp/Makefile
4915 Jul 16 22:20 1996 dsa/dsa/tcp/asnldec.c
9301 Jul 18 23:44 1996 dsa/dsa/tep/top_dap.c

r~-154/50 8545 Jul 16 22:20 1996 dsa/dsa/tep/tep_if.c
~rw-rwer-~154/50 46018 Jul 18 00:45 1996 dsa/dsastcp/Dapidu_r.c
~rw-rw-Tw=154/50 5215 Aug 27 17:30 1996 dsa/dsa/tep/.make.stata
- pwxzwxr-x154/50 0 Jul 18 00:18 1996 dsa/api/
- raxTwxr-x154/50 0 Aug 27 1 0 1996 dsa/api/sre/ .
Lrwxrwerwiel$4/50 30 Aug 16 0 2 1996 dsa/api/sre/Attr_i.c symbolic link to ../
Lowerwxrwx154/50 10 Aug 16 08:51 1996 dsa/api/sre/Auth_i.c symbolic link to ../
Lrwxrwxrwxl54/50 23 Aug 16 0 2 1996 dsasapi/src/Hecp.c symbolic link to ../stack/necwork/Htep.c
lowxerwxrwxl54/50 29 Aug 16 08:32 1996 dsasapi/sre/MPS_i.c symbolic link to ../.
Llrwxrwxrwx154/50 32 Aug 16 0. 1 1996 dsa/api/src/Rupper_i.c symbolic link to .
Lowxzwxrwxl54/50 29 Aug 1§ 0. 2 1996 dsa/api/src/Syx_i.c sywbolic link to ../.
lrwxrwxrwx154/50 8 Aug 16 0 2 1996 dsa/api/sreo/dsa.h symbolic link to pack
Lowxrwxrwxl154/5¢ 26 Aug 16§ 08:32 1996 dsa/api/src/pAttr.c symbolic link =o .
Lewxwxrwx154/50 25 Aug 16 08:52 1996 dsasapr/src/pMHS.c symbolic link go ../
Lnocrwxrwx154/50 28 Aug 16 0. 2 1996 dsa/api/src/pSyntax.c symoolic link to ../
-=154/50 2216 Sul 1§ 2 0 1996 dsa/api/src/Make.SCQ

154/5¢ 2756 Jul 16 2 0 1996 dsa/api/srec/Make.SUN

154750 490 Jul 16 2 0 1996 dsasapi/srec/Makefile

154/50 9653 Sul 18 2 S 1996 dsa/api/src/dsapi.c
r--z--r--154/50 1457 Jul 1§ 2 0 1996 dsasapi/src/pack.h
Lrwerwxrwxl54/50 31 Aug 6 0 2 1996 dsa/api/sre/stackGluei.c symbolic link to
-rw=tw-rw-154/50 5981 Aug 26 12:34 1996 dsa/api/src/.mmke.staca
~rwxrwxr-x154/50 0 Jul 18 00:38 1996 dsa/api/includes
lnnarwxrwx154/50 20 Aug 15 08:52 1996 dsa/api/include/Accr.h symbolic link zo
Llrwxzwxzwxl54/50 20 Aug 16 08:32 1996 dsa/apir/include/Auth.h symbolic link zo
Lrwxrwxrwx154/50 25 Aug 16 O 2 1996 dsasapi/include/DapDsp.1 symbalic link to
Lrwxsaxrwx154/50 25 Aug 16 0 2 1996 dsa/api/include/Dapasn.a symbolic link to
lowxzaxxrwxl54/50 22 Aug 16 08:32 1996 dsasapi/include/Dapidu.l symbolic link to

/.. /include/Dapidu.h

Sep 16 15:56 1997 liscting.3

Page 2

../include/Dipidu.h

../stack/include/Info.h

. ./scack/include/Roseld.}y
. ./scack/include/Rupper.h
to ../../include/SYNTAXES.2

../atack/include/queus.h

/stack/include/Dsp.h

Lrexswxrwx154/50 22 Mg 16 1996 dsa/api/include/Dipidu.l symbolie link co ../
Lrwezxrwx154/50 23 Aug 16 1996 dsa/api/include/Info.h symbolic link o
Lrwxzwxrwxl54/50 19 Aug 16 1995 dsa/api/include/MTS.k symbolic link o ../../include/MTS.h
lrexzuxzwrl54/50 25 Aug 16 1996 dsa,api/include/Roseld.3 symbolic link to
Lowncrnrax154/50 25 Aug 16 1995 dsa/api/isclude/Rupper.2 symbolic link 2o
LraxTwxTwx154/50 28 Aug 16 1996 dsa/api/include/SYNTAXES.3 symbolic link
Aug 16 ¢ 1996 dsa/api/include/Syx.h symbolic link o ../../include/Syx.h
Aug 16 1996 dsasapi/include/asnlsys.3 symbolic link to ../stack/include/asnisys.h
Loaxraxrax154/50 Aug 1§ 1996 dsasapi/include/queus.h symbolic link :o
lrxexrwxl54/50 Aug 16 1996 dsasapi/include/rstypes.a symbolic link =0 ../stack/include/rsatypes.h
~-r-=154/50 Jul 16 1996 dsasapi/include/ds.h
Aug 16 1996 dsajapi/include/Dsp.a symoolic link zo ..
Aug 1§ 1996 dsa/apL/dx300 symbolic link to ../dx500
Aug 16 ¢ 1996 d.n/apxwtelic link o .,/scack
-re-r-=154/50 Jul 16 996 dsasapi/Maxgliod.
caxzaxr-x154/50 Aug 21 <:;yﬁd::/
Tuxxrwx154/59 Aug 16 /Makefile symbolic link o Makefilas.SUM
154/50 Jul 15 1995 I3AAp)/ deamo/Makefl x
154750 Jul 16 1996 dsa/apil/demo/Make:
Jul 16 1995 dsa/apifdemo/Make
Jul 16 199§ ﬂsl/’aptédam/mknti‘.t.sml
Jul 18 1995 dsasapil/demo/acc
1dul 16 1996 dsa,api/demo/cont
5 Jul 1§ 1996 dsa/api/demo/demo.:
Jul 16 1995 dsa/apiVdemo/demo.lh
Jul i8 1998 ismamw._
+ saxaxz-x154/50 Aug 21 1994 dsasapi/libs
-rarraxr-x154/50 Sui il 1996 dsa,duas
L Aug 16 1994 dsa/dua/version.s symool.z link to ../dsa/varsion.c
Aug 21 1995 isa,Zua/Maxkefile
wul 1 1395 dsasduasdua.c
coxzaxr-x154/50 Aug 96 isa,dua/rfcl006/

raxrerax154/50Q

-r--154/350
184/90

9% dsa,cua/rfzld06/dua.c symbolic link o ..

06,/varsion.z symoolic .ink T

96 isa, dua/

s L006/3cackGluer. 2 symbolic Lin
1995 dsza, Zua,

1006/ .qaxe. sTatR
.006/cua.a
C06/versicn. 3

25 dsa; Zuas
96 dsa/dua/
95 dsasduas

Fmoolic
symoois
symdolic

107

/dua.z
3 ../version.z

X %o ../../oper;scackif/stackGluei.c

/dsaszzp/
jwersion. s

Sep 26 15:56 1997 listing.) Page]
-x--r--r--154/50 4148 Jul 29 02 58 1996 dsa/include/schems h
1309 May 16 00 17 1996 dsa.include/stack.h
2890 Jul 29 0254 1996 dsa,include/support.h
2693 Jul 28 19 39 1994 dsa/include/trace h
11328 Jul 18 0045 1996 dsa. tnclude/Dapidu h
7902 Aug 27 17-11 1996 dsasinclude/Atir h
10179 Aug 27 17 11 1996 dsa’include/Auth.h
17096 Aug 27 17-31 1996 dsasinclude/MTS h
~rw-rw-r--154/50 6985 Aug 27 17-11 1396 dsa /include/Syx h
-rw-rw-r--154/50 956 Aug 27 17 J1 199¢ /include; SYNTAXES h
17948 Jul 31 1% 38 1996 dsa, include/Dipidu h
2174 Aug S 04.08 1996 dsa/include/access h
1515 Jul 18 23.36 1996 dsa/include/stackif.h
-rw-rw-r--154/50 9886 Jul 11 19-128 1996 dsa/include/Auth.h OLD
- rwxrwxr-x154/50 0 Jul 18 00-38 1996 dsa/support/
- rwxrwxr-x154/50 0 Sep 17 17 14 1996 dsa/support/misc/
~r--r--r--154/50 356 Jul 16 21-20 1996 dsa/support/misc/Makefils
8262 Jul 16 22:29 1996 dsa,/support/misc/asnflatten ¢
2156 Feb 27 01 44 1996 dsa/support/misc/initstack ¢
19292 Jul 10 20:)6 1996 dsa/support/misc/lme ¢
1866 Jul 16 22-20 1996 dsa/support/misc/other ¢
9193 Jul 18 00 08 1996 dsa/support/misc/trace c
~g--r--r--154/50 8067 Jul 18 00 OB 1996 dsa/support/misc/flatten ¢
-r--r--r--154/50 2052 Jul 16 22.20 1996 dsa/support/misc/trim.c
-rw-rw-rw-154/50 4929 Aug 27 17-47 1996 dea/support/misc/ make state
-rw-rw-r--154/50 46904 Aug 27 17-47 1996 dsa/suppert/misc/asnPlatten o
~pw-rw-r--154/50 61208 Aug 27 17-47 1996 dsa/support/misc/flatten o
-rw-rw-r--154/50 520 Aug 27 17:47 1996 dsa/support/miac/ . nse_depinfo
-rw-rw-r--154/50 85476 Aug 27 17-47 1996 dsa/support/misc/lme.o
-rw-rw-r--154/50 19080 Aug 27 1747 1996 dsa/support/misc/other o
~rw-re-r--154/50 51320 Aug 27 17 47 1996 dsa/support/misc/trace o
-rw-rw-r--154/50 39140 Aug 27 1747 1996 d. support/misc/trim. o
-rwxrwxr-x154/50 O Sep 17 17-14 1996 /support/pack/
-r--r--r--154/50 330 Jul 16 22 20 1996 dsa/support/pack/Makefile
3811 Jul 16 22 20 1996 dsa/support/pack/pAttr ¢
4195 Jul 16 22.20 1996 dsa/eupport/pack/pMHS. ¢
11633 Jul 18 2341 1996 daa/support/pack/pSyntax c
~rw-rw-rw-154/50 2130 Aug 27 17:46 1996 dsa/support/pack/ make state
—rwerw-T--154/50 631848 Aug 27 17 &6 1996 dsa/support/pack/pSyntax o
Srw-rw-r--154/50 41432 Aug 27 17 46 1996 dsa,support/packs/pAttr o
-rw-rw-r--154/50 259 Aug 27 17.46 1996 d support/pack/ nse_depinto
~rw-rw-r--154/50 17536 Aug 27 17 46 1996 dsa, support/pack/pMHS.o
- rwxrwxr-x154/50 0 Aug 27 17-11 1996 d support/asn/
1rwxrwxrwxl154/50 24 Aug 16 08:52 1996 dsa support/asn/info. asn symbolic link %o / satack/asn/info asn
~rw-rw-r--154/50 890 Aug 21 12 47 1996 dsa/support/asn/Makefile
-g--r--r~-154/50 3566 Jul 16 22 20 1996 dsassupport asn/attr asn
4756 Aug 21 14 54 1996 dsa’suppors.asn/auth.asn
3926 Jul 16 22 20 1996 support/asn/basicAC asn
841 Jul 16 22 20 1996 suppor /asn/defs.asn
$57 Jul 16 22.20 1996 suppor: asn/fix.awk
r--154/50 9898 Jul 16 22 20 1996 /suppor!/asn/mes n
-r--r--r--154/50 4004 Jul 16 22.3C 1996 dsa/support’asn/syx n
-rw-rw-t--154/50 27366 Aug 27 17 1T 1996 dsa/suppor: asn/ALL.asn
lrwxrwxrwx154/50 25 Aug 16 1996 dsa,support asn/upper asn symbolic link o / J/stack/asn/upper asn
-~rwxrwxr-x154/50 0 Sep 17 17.l4 1996 dsas/support pack-fp/
“r--r--r--154/50 353 Jul 16 22:20 1996 dsa/suppor: pack-fp/Maketfile
L
Sep 26 1556 1997 listing.l Page &
~rw-rw-rw-154/50 2054 Aug 27 17 47 1996 dsas/suppert/pack-fp/ make.state
~rwerw-r--154/50 27198 Aug 27 1711 1996 dsa/support,pack-fp/Atir_i ¢
-rw-rw-r-=154/50 18835 Aug 27 1731 1996 dsa/support,pack-fp/Auth_i.c
-rw-rw-r--154/50 58582 Aug 27 17 31 1996 dsa/support/pack-fp/MTS_1 ¢
-rw-rw-r--154/50 16657 Aug 27 17 11 1996 dsa/support/pack-fp/Rupper_1 ¢
crw-rw-r--154/50 21283 Aug 27 17 31 1996 dsa/support/pack-fp/Syx_i c
-rw-rw-r--154/50 47208 Aug 17 17.46 1996 dsa;support/pack-fp/Auth_i o
srw-rw-r--154/50 41920 Aug 27 17-44 support pack-fp/Attr_i o
-rw-rw-r-~-154/50 435 Aug 27 17-47 support,pack-£fps/ nse_depinfo
Srwerw-r--154/50 67520 Aug 27 1T 4% 1996 dsassupport,pack-fp/MTS_1 o
~TW-rw-r--154/50 22820 Aug 27 17 45 1996 dsa/support/pack-fp/Rupper_i o
-rw-rw-r--154/50 44120 Aug 27 17 47 1996 dsa/support. pack-fp/Syx_i o
~r--r--r--154/50 293 Jul 16 22 26 1996 dsassupport/Makefile '
-Twxrwxr-x154/50 0 Sep 17 17 .4 1996 dsa. mgmt. i
-r--r--154/50 3080 Jul 18 90 3 1996 dsa,mgmt MGMT h 1
-r--r--154,50 549 Jul 16 22.21 1996 dsa, mgme. Makefile |
-r--r--154/50 20120 Jul 16 22 i1 1396 dsa/mgmwt dumplN.c ‘
~r--r--154/%0 37393 Jul 16 22 i1 1996 dsa;mgmt.dumpDapidu c
~r--r--r--154/50 24926 Jul 16 22 11 1996 dsa mgme, dumpTime < ‘
-r--r--r--154/50 16152 Jul 16 22 21 1994 dsa/mgmt/dumpVaiue <
) -rw-rw-r--154/50 28015 Aug 16 19-33 1995 dsa. mgmt /'minput c
k -r--r--r--154/59 9460 Jul 16 22 21 1996 dsa'mgme mieil ¢
-r--r--r--154/50 8150 Jul 16 22 2 1996 dsa mgmt. parseDN ¢ |
| -r--r--r--154/50 39644 Jul 18 00 24 1996 dsa'mgmt parseDapadu ¢ |
} -r--r--r--154/%0 3368 Jul 16 22 i1 1996 dsa,mgmt/parseDip |
' ~p--r--z--154/50 9076 Apr 29 35 i1 1994 dsa mgmt. parseDop ¢ :
: -r--r--r--154/50 15173 Jul 16 22 i1 1396 dsa,mgmt parseMhs c |
i ~r--r--r--154/50 16845 Jul 28 19 iC (996 dsa/mgmet parseSchema < ‘
' -r--r--r--154/50 24253 Aug 5 04 39 1996 dsa,mgmt.parsescript ¢ I
~r--r--r--154/50 6777 Jul 16 21 11 1994 dsa/mgmt/parseStack ¢ §
-t--r--r--154/59 2953 Jul 28 19 40 1996 dsa.mgmt.parseTrace c “
sr--x--r--154/50 27951 Jul 16 12 21 1996 dsa.mgmt parseVaiue c |
-r- -r--154/50 4287 Jul 28 19 4° 1996 dsa mgmt 'parseDsp c }
-r--r--r--154/50C 21590 Jul 18 3¢ 23 JdumpSumenary © |
ar--r--r--156/50 11748 Aug 5 04 32 parseAccess c i
sr--r--r--154/50C 5824 Sul 18 9C 23 parseAssoc < i
-rw-TW-r--154/50 74048 Aug ? .mUtil o !

-re-r--r--154/59
-r--r--r--154/50
-rw-ra-re-154/50
-rWetrw-r--154/50
~rw-rw-r--154,50
-rw-rw-r--154,5%0
P

=<
srwerw-r--154.50
-rwera-r--154/50

rwerwet- -154/5C
rwera-ce-154.59
Srwerwer--154.50

3851 Jul
6480 Jul
16247 Aug

80816 Aug 2

92752 Aug
1763 Aug
84352 Aug
5755 Aug
79404 Aug
5840 Aug
%274 Aug
54344 Aug
57716 Aug
95547 Aug
#3754 Aug
SAZRd Aug
£3504 Aag
7140 Aug
49178 Auj

1394

parsedisp ¢
/parseCper c
maxe state
AumplN 5
Jumplapidu o
~se_lepints

dsa
dsa ngrt durpvaiue o
daa mgnt mIrput 2

dsa oymt parseAccess >
isa gr: carseAssac o>
1sa grmT parselN o

isa mgm: sarseCapidu o
dsa mgmt rarselip o
isa mgrt parselisp o
isa mgrc carselsp o
1sa ™g~r parseMhs 3
isa T3t parsecper o

108

Sep 26 15:56 1997 listing.]) Page 5
-rw-rw-r--154/50 82180 Aug 27 17:45 1996 dsa/mgmt/parseSchema.o
-rw-rw-r--154/50 84088 Aug 27 17:45 1996 dsa/mgmt/parseScript.o
“rwerw-r--154/50 71580 Aug 27 17:45 1996 dsa/mgmt/parseStack.o
-rw-rw-r--154/50 55348 Aug 27 17:45 1996 dsa/mgmt/parseTrace.o
-rw-rw-r--154/50 93820 Aug 27 17:46 1996 dsa/mgmt/parseValue.o
-rwxrwxr-x154/50 0 Sep 17 17:14 1996 dsa/schema/
~r--r--r--154/50 377 Jul 28 19:40 1996 dsa/schema/Makefile
-r--r--r--154/50 1953 Jul 29 05:23 1996 dsa/schema/SCHEMA.h
-r--r--r--154/50 9124 Jul 29 05:23 1996 dsa/schema/sAttr.c
-r--r--r-~154/50 6187 Jul 28 19:40 1996 dsa/schema/sAttrSet.c
-r--r--r--154/50 9086 Jul 28 19:40 1996 dsa/schema/sNBind.c
-r--r--r--154/50 10390 Jul 28 19:40 1996 dsa/schema/sOClass.c
-r--r--r--154/50 4686 Jul 28 19:40 1996 dsa/schema/sPrefix.c
~-r--r--r--154/50 3694 Jul 28 19:40 1996 dsa/schema/sSyntax.c
-r--r--r--154/50 19627 Jul 28 19:40 1996 dsa/achema/sUppar.c
-r--r--r--154/50 11396 Jul 28 19:40 1996 dsa/schema/siUtils.c
wre-r--r--154/50 4483 Jul 28 19:40 1596 dsa/schema/sFlatten.c
-rw-rw-rw-154/50 6033 Aug 27 17:42 1996 dsa/schema/.make.atate
-rw-rw-r--154/50 69420 Aug 27 17:41 1996 dsa/achema/sAttr.o
~rw-rw-r--154/%0 50220 Aug 27 17:41 1996 dsa/schema/sAttrSet.o
~rw-rw-r--154/50 735 Aug 27 17:42 1996 dsa/schema/.nse_depinfo
-rw-rw-r--154/50 49320 Aug 27 17:41 1996 dsa/schema/sFlatten.o
-rw-xw-r~-154/50 55540 Aug 27 17:41 1996 dsa/schema/sNBind.o
~rw-rw-r--154/50 54436 Aug 27 17:41 1996 dsa/schema/sOClass.o
-rw-rw-r--154/50 48068 Aug 27 17:41 1996 dsa/schema/sPrefix.o
“rw-rw-r--154/50 47860 Aug 27 17:42 1996 dsa/schema/sSyntax.o
-rw-rw-r--154/50 61276 Aug 27 17:42 1996 dsa/schema/sUpper.o
“rw-rw-r--154/50 58408 Aug 27 17:42 1996 dsa/schema/sUtils.o
~rwxrwxr-x154/50 0 Sep 17 17:14 1996 dsa/dip/
-rwxrwxr-x154/50 0 Sep 17 17:14 1996 dsa/dip/exec/
-r--r--r--154/50 7034 Jul 16 22:21 1996 dsa/dip/exec/EXEC.h
628 Jul 16 22:21 1996 dsa/dip/exec/Makefile
-r--r--r--154/50 9795 Jul 16 22:21 1996 dsa/dip/exec/eAdd.c
-r--r--r--154/50 4515 Jul 16 22:21 1996 dsa/dip/exec/eAttr.c
«r--r--r--154/50 10506 Jul 16 22:21 1996 dsa/dip/exec/eAttrChoice.c
“r--r~-r--154/50 2247 Jul 16 22:21 1996 dsa/dip/exec/eCompare.c
-rw-rw-r--154/50 14140 Aug 23 19:01 1996 dsa/dip/exec/eConfig.c
-x--r--r--154/50 4677 Jul 16 22:21 1996 dsa/dip/exec/eDn.c
-x--r=--r-~154/50 10447 Jul 16 22:21 1996 dsa/dip/exec/eEid.c
~r--r--r--154/50 13243 Jul 18 23:43 1996 dsa/dip/exec/eEntrylnfo.c
8892 Jul 18 23:43 1996 dsa/dip/exec/eEntryInfoRow.c
-r--r--r--1%4/50 35173 Jul 18 23:43 1996 dsa/dip/exec/aEntryInfoSet.c
«r--r-~r--154/50 11162 Jul 16 22:21 1996 dsa/dip/exec/aFilter.c
12930 Jul 16 22:21 1996 dsa/dip/exec/eFilterDivide.c
-r--r--r--154/50 16579 Jul 16 22:21 1996 dsa/dip/exec/eFilterGen.c
-Tw-rw-r--154/50 16946 Aug 16 09:41 1996 dsa/dip/exec/eFilterItem.c
-r--r--r--154/50 20075 Jul 16 22:21 1996 dsa/dip/exec/eFilterNorm.c
-x--r--r--154/50 13324 Jul 16 22:21 1996 dsa/dip/exec/eFilterReduca.c
~r--r--r--154/50 9945 Jul 18 00:12 1996 dsa/dip/exec/eFlatten.c
~r--r-~r--154/50 8068 Jul 16 22:21 1996 dsa/dip/exec/eFragment.c
4389 Jul 18 23:42 1996 dsa/dip/exec/eList.c
4482 Jul 16 22:21 1996 dsa/dip/exec/eMain.c
-r--r--r--154/50 5775 Jul 16 22:21 1996 dsa/dip/exec/eModDn.c
-r--r--r--154/50 8012 Jul 16 22:21 1996 dsa/dip/exec/eModify.c
~r--r--r--154/50 20189 Jul 18 23:42 1996 dsa/dip/exec/eNavigate.c
~r--r--r--154/50 2223 Jul 16 22:21 1996 dsa/dip/exac/eRead.c
Sep 26 15:56 1997 listing.3 Page &
-r--r--r--154/50 4537 Jul 16 22:21 1996 dsa/dip/exec/eRemove.c i
-x--r--r--1%4/50 16089 Jul 16 22:21 1996 dsa/dip/exec/eSubtree.c .
-r--r--r--154/50 18953 Jul 31 06:32 1996 dsa/dip/exec/eUpdate.c H
-r--r--r--154/50 13785 Jul 16 22:21 1996 dsa/dip/exec/eUtils.c
-rw-rw-rw-154/50 23336 Aug 27 17:59 1996 dsa/dip/exec/.make.state |
-rw-rw-r--154/50 52424 Aug 27 17:56 1996 dsa/dip/exec/eMain.o !
-rw-rw-r--154/50 69776 Aug 27 17:56 1996 dsa/dip/exec/eNavigate.o !
-rw-rw-r--154/50 2857 Aug 27 17:59 1996 dsa/dip/exec/.nse_depinfo
“rw-rw-r-~154/50 49948 Aug 27 17:%56 1996 dsa/dip/exec/eCompare.o
-rw-rw-r--154/50 49600 Aug 27 17:56 1996 dsa/dip/exec/eRead.o
-Tw-rw-r-~154/50 51880 Aug 27 17:56 1996 dsa/dip/exec/eList.o
-rw-rw-r--154/50 60380 Aug 27 17:56 1996 dsa/dip/exec/eSubtree.o
-rw~rw-r-~154/50 57132 Aug 27 17:57 1996 dsa/dip/exec/eFilter.o
-rw-rw-r~~154/50 75744 Aug 27 17:57 1996 dsa/dip/exec/eFilterReduce.o
-rw-rw-r-~154/50 62216 Aug 27 17:57 1996 dsa/dip/exec/eFilterDivide.o
-rw-rw-r--154/50 63096 Aug 27 17:57 1996 dsa/dip/exec/eFilterGen.o
-rw-rw-r--154/50 63012 Aug 27 17:57 1396 dsa/dip/exec/eFilterNorm.o
~rwerw-r--154/50 54895 Aug 27 17:57 1996 dsa/dip/exec/eFilterItem.o
~rw-rw-r--154/50 57468 Aug 27 17:57 1996 dsa/dip/exec/eAdd.o
~rw-rw-r--154/5C 54475 Aug 27 17:57 1996 dsa/dip/exec/eMedDn.o
-rw-rw-r--154/50 55380 Aug 27 17:58 1996 dsa/dip/exec/eMeodify.o
~rw-rwer--154/50 53680 Aug 27 17:58 1996 dsa/dip/exec/eRemove.o
-rw-rw-r--154/50 68492 Aug 27 17:58 1996 dsa/dip/exec/eUpdate.o
-rw-rw-r--154/50 57360 Aug 27 17:58 1996 dsa/dip/exec/eEntrylInfo.o
-rw-rw-r--154/50 55676 Aug 27 17:58 1996 dsa/dip/exec/eEntryInfoRow.o
-rw-rw-r--154/50 81758 Aug 27 17:58 1996 dsa/dip/exec/eEntryInfoSet.o
50840 Aug 27 17:58 1996 dsa/dip/exec/eAtrr.o
58108 Aug 27 17:58 1996 dsa/dip/exec/eAttrChoice.o
52608 Aug 27 17:59 1996 dsa/dip/exec/eDn.o
56144 Aug 27 17:59 1996 dsa/dip/exec/eFragment.o
55754 Aug 27 17:59 1995 dsa/dip/exec/eEid.o
61764 Aug 27 17:59 1996 dsa/dip/exec/eConfig.o
72472 Aug 27 17:59 1996 dsa/dip/exec/eFlatten.o
77272 Aug 27 17:59 1996 dsa/dip/exec/eUtils.o
~rwxrwxr-x154/50 9 Sep 17 17:14 1996 dsa/dip/asn/
~rw-rw-r--154/50 770 Aug 16 09:27 1994 dsa/dip/asn/Makefile
844 Jul 16 22:21 1996 dsa/dip/asn/defs.asn
8603 Jul 16 22:21 1996 dsa/dip/asn/dipidu.asn
~rw-rw-rw-154/50 119 Aug 21 12:44 1996 dsa/dip/asn/.make.statae
-rwrrwxr-x154/50 0 Aug 21 15:17 1996 dsa/dip/ingres/
Jul 1996 dsa/dip/ingres/INGRES.n
Jul 199¢ dsa/dip/ingres/Makefile
Jul 1995 dsa/dip/ingres/tAlias.sc
Aug 23 19:02 1996 dsa/dip/ingres/tAttr.sc
Jul 16 22:21 1996 dsa/dip/ingres/tBlob.sc
Jul 1996 dsa/dip/:ngres/tDit.sc
Jul 1996 dsa/dip/ingres/tEntry.sc
Jul 1996 dsa/dip/ingres/tlnfa.sc
Jul 1996 dsa/dip/ingres/tName.sc
Jul 1996 dsa/dip/ingres/tSearch.sc
Jul 1996 dsa/dip/ingres/tTree.sc
Jul 1995 dsa/dip/ingres/tUtils.sc
-rw-rw-rw-154/50 Aug 1996 dsa/dip/ingres/.make.state
-rw-rwW-r--134/50 Aug 5 19946 dsa/dip/ingres/tDit.c
-rw-rw-r--154/50 Aug S 1996 dsa/dip/ingres/tSearch.c
-rW-rW-r--134, 50 Aug 21 15:15 1996 dsa/dip/ingres/tTree.c

110

Sep 26 15-56 1997 listing } Page
-rwerw-r--154/50 14876 Aug 21 15 15 1996 dsa. dip ingres/tName c
-rwerw-r--154/90 21994 Aug 21 15 15 1996 dsa,dip, ingres/tEntry <
Srw-rwer--154/50 16865 Aug 21 15 15 1996 dsa/dip/ingres/tBlob c
-rw-rw-r--154/90 5785 Aug 21 15 15 1996 dsa/dip/ingres/tinfo c
Srw-rw-r--154/50 17520 Aug 21 15 15 1996 dsa/dip/ingres/tAlias ¢
“rw-rw-r--154/50 5346 Aug 21 15 15 1996 dsa.dip/ingres/tAttr ¢
-rw-rw-r--154/50 7510 Aug 21 15 1S 1996 dsasdipsingres/tUtils ¢
~rw-rw-r--154/50 77828 Aug 21 15 15 1996 dsadip/ingres/tOit o
-rwerw-r--154/50 994 Aug 21 15 17 1996 dsa/dip/ingres/ nse_depinfo
Srwerw-r--154/S0 71680 Aug 21 15 16 1996 dsa/dip/ingres/tTres o
Srw-rw-r--154/50 78264 Aug 21 1S 16 1996 dsa;dip/ingres/tSearch 3
“rw-rwer--154/50 65532 Aug 21 15 16 1996
srw-rw-r--154/50 74211 Aug 21 15-16 1996 /dip/ingres/tEntry o
-rwerw-r--154/50 67644 Aug 21 15-16 1996 dsa.dip/ingres/tBlob o
~rw-rw-r--154/50 52960 Aug 21 15 16 1996 dsa/dip/ingres/tinfo o
~TW-rw-r--154/50 69624 Aug 21 15-16 1996 dsa,dip/ingres/tAlias o
crw-rw-7--154/50 $3076 Aug 21 15.16 1996 dsa/dip/ingres/tAttr o
crwerw-r--154/50 55760 Aug 21 15:17 1996 dsa,dip/ingres/tUtils o
- Twxrwxr-x154/50 0 Sep 17 1714 1996 dsa/dip/inciuda/
-rw-rw-r--154/50 9367 Aug 23 19 15 1996 dsa’/dip/include/DIPINT h
sre-r--r--154/50 164 Jul 16 22 21 1996 dsa/dip/include/Makefile
2247 Jul 16 22-21 1996 dsa/dip/include/makeTableHeaders
646 Jul 31 19 48 1996 dsa/dip/include/zalias ¢
691 Jul J1 19 48 1996 dsa/dip/include/zattr c
733 Jul 31 19 48 1996 dsa/dipsinclude/zblob c
672 Jul 31 19 48 1996 dsa/dip/include/1dit c
940 Feb 18 22 12 1996 dsa/dip/include/zdit sh
~rwWer--r--154/50 1004 Feb 18 22 12 1996 dsa/dip/include/1search sh
Srwer--r--154/50 1011 Feb 18 22 12 1996 dsa.dip/include/ztres sh
896 Feb 18 12 12 1996 dsa/dip/include/zname sh
979 Fab 18 2212 1996 dsa/dip/include/zentry sh
1013 Feb 18 22 12 1996 dsa/dip/include/zblob sh
Srw-r--r--154/50 783 Peb 18 22-12 1996 dsa/dip/include/zinfo sh
Srwer--r--154/50 864 Peb 18 22 11 1996 dsa/dip/include/zalias sh
973 Feb 18 22-11 1996 dsa/dip/include/zattr sh
722 Jul 31 19 48 1996 dsa/dip/includeszentry c
r--154/50 610 Jul 31 19-48 1996 2info ¢
~rw-r--r--154/50 685 Jul J1 1948 1996 dsa/dip/include;zname <
708 Jul J1 19 48 1996 dsa/dip/include/zsearch =
703 Jul 31 19 48 1996 dsa/dip/include/ztree ¢
- rw-rw-rw-154/50 147 Aug 26 12.5) 1996 dsa. dip/inciude/ make state
-rwerw-T--154/50 1214 Aug 23 15 13 1996 dea/dipsincludesz
-rwxgwxr-x154/50 0 Sep 17 17 14 1996 dsa/dip/mona/
Sreer--r--154/50 309 Jul 16 22 21 1994 dsa/dip/mono, Makefile
~r--r--r--154/50 6409 Jul 18 70.13 1996 dsa/dip/mono/dipMono c
-rw-rw-rw-154/50 1474 Aug 27 18 00 1994 dsa/dip/mono/ make state
-rwerw-r--154/50 £9404 Aug 27 17 59 1996 dsa/dip/monosdipMono o
~TW-rW-r--154/50 101 Aug 27 1759 1996 dsa/dip/mono/ nse_depinfs
-rwerw-r--154, 50 271 Aug 24 1930 1996 dsa/dip/Makefile
-Tw- rw-rw-154/50 1640 Sep 17 1714 1996 daa/dip/ ma,
-Twxrwke-x154/50 O Sep 17 17 14 1996 dsasdip/rubix,
“rw-rwer--154/50 27108 Aug 26 13-07 1996 dsa/dip. rubix/x
crwerw-T 424 Aug 24 1910 1996 dsa/dip/rubix.Makefile
~rWe -t 3718 Aug 27 14 42 1996 dsa/dip/rubix.tAttr e
~rw-rw-r 12119 Aug 28 11.30 1996 dsa/dip/rubix/tBlob s
-rwerw-r--154/50 15122 Aug 28 11)1 1996 4dsa’dip/rubix/tDit e
Sep 26 15:56 1997 listing 1 Page 8§
crwerw-r--154/50 12895 Aug 28 11 31 1996 dsa/dip/rubix/tEntry e
-rw-tw-r--154/50 4053 Aug 24 16 47 1996 dsa.dip/rubix/tinfo o
9671 Aug 28 11 32 1996 dsa/dip,rubix/tName e
12962 Aug 27 15 35 1996 dsa,dip/rubix/tSearch
11508 Aug 28 11 1) 1996 dsa/dip/rubix/tTree e
~TWerw-r--154/50 9434 Aug 27 15 06 1996 dsa/dip/rubix/tUtils e
“rw-rw-r--154/50 1120 Aug 26 13 19 1996 dsa/dip/rubix/RUBIX h
srw-rw-rw-154/50 12582 Aug 18 11)6 1996 dsa/dip/rubix/ make state
-rwerw-r--154/50 5588 Aug 27 18 00 1996 dsa/dip/rubix/tInfo
Srw-rw-r--154/50 10407 Aug 28 i1 29 1996 dsa/diprrubix tAlias e
7615 Aug 27 18-00 1994 dsa:dip rublx/tAttr <
20212 Aug 28 11 34 1996 dsasdip. rubix/tName ¢
609 Aug 23 18 18 1996 dsa.dip.rubix/NCTES |
-rw-rwer--154,50 644 Aug 26 13 12 1996 dsa.dip rubix/where awx !
-rw-rw-r--154/50 5588 Aug 27 18 00 1996 4sa.dip rubixstinfo pc I
26928 Aug 28 11 14 199 dsa diprrubix/tBlob '
“rw-rw-r--154/50 7615 Aug 17 18 20 1996 dsa,dip.rubix,tACtr pc !
Srwera-r--154/90 10406 Aug 27 18 00 1996 dsa dip rubix 'tUtils ¢ .
-rwerwer- 10406 Aug 27 18 50 1996 dsa‘dip-rubix tUtils pc '
Srwerwer- 27577 Aug 28 1! 34 1996 dsa dip/rubix tTree !
et - 20080 Aug 28 11 14 1996 2sa dip/rubix tName pc
Srwerw-r--154°50 33910 Aug 28 11 14 1996 dsa diprubix’tDit <
Srwerwer--154/50 24234 Aug 28 11 14 1996 dsa-diprubix.tAlias ¢ i
“rwerw-r- 24104 Aug 28 1i 34 1996 dsa dip/rubix tAiias pe :
-rw-rw-r--154/50 21696 Aug 27 18)0 1996 dsa,dip/rubix.cSearch -
crw-rw-r--154/50 21696 Aug 18 ¢ dsa . dip. rubix tSearch pc |
Srwerw-r--154/50 26794 Aug 1 dsa/dip rubix. tBiob pe '
- rw-rwere 27247 Aug 1 dsa/d1p rubix tTree pc '
Srw-rwer- 27729 Aug 1 isa/d1p/rubix. tEntry ©
-rw-rw-r--154/50 1549 Aug : dsa/dip. rubix. t ¢ '
Irwxrwxrwx154/50 26 Aug dsa dip. rubix Make inci.de symbolic link o include Make inciude ;
-rw-rw-r--154/50 27597 Aug deasdip - rubix. tEntry pc i
crwerw-r--154/50 63844 Aug dsacdip. rubix/tinto > :
-owxrwxr-x154/50 155648 Aug dsa dip. rubix’t
crw-rwer--154/50 33600 Aug 131 4sa. dip, rubix. D1t pe
Srw-rw-r--154,50 69488 Aug 18 o0 isa.d1p. rubix. tAtix o
~rwerw-r--154/50 68940 Aug 18 20 isa:dip rubix-tUzils >
Srwerwer--154,50 1194 Aug 13 dsa 31p. rubix. nse_depinf>
crWw-Twer--154/50 90740 Aug 8 11)4 1994 dsa dip rubix. tName
“re-rw-r--154.50 98192 Aug 28 i1)4 1994 4sa dip rubix tAiias >
SrW-rw-r--154/50 89268 Aug 7 18 51 1994 dsa di1p rubix.tSearch >
srw-rw-r--154/50 102484 Aug 28 ii 35 1995 dsa dip rubix.tBlob >
crwsrwer--154.50 0 104292 Aug 28 1l 15 1994 dsa dip rubix/tTree >
-rW-rwer--154/50 102435 Aug 28 11)5 1994 dsa dip. rubix. tEntry o
crwerw-r--154.50 105872 Aug 28 i1)% 1996 4sa 4ip rubix :lit > .
Srw-ra-r--154,50 765 Sep i7 17 14 199% dsa:dip. nse_depints .
- pwxrwxr-x154/50 0 Sep 17 17 14 1994 dsa cper :
- rwxrwxr-x154, 50 9 3mp 17 17 14 1994 dsa oper local !
sreer--r--154.50 5287 Aug 5 0J 36 1996 dsa. nper’local LOCAL n
sre-r--r--154.50 422 Jui 30 70 5) 1996 dsa. oper local/Makefile
sr--r--r--154/50 9649 Aug 5 D) 26 1996 dsasoper local oAdd 2 .
sr--r--r--154/56 3673 Sul 3G 20 53 1996 dsa oper‘locai.oBlock < }
“pe-r--r--154,59 8154 Jul 10 50 53 1996 dsa oper local. olompare - .
er--r--r--154/50 8280 Aug 1 18 55 1994 1sa oper iocai.osliat o
~fe-z--r--154/50 5426 Jul 10 00 S3 1996 dsa cper locai oMain =)
cr--r--r--154.90 8541 Jul JC 65 S 1996 dsa cper local SModDn :

Sep 26 15:56 1997 listing.d Page 9
-r--r--r--154/50 12637 Jul 30 20:42 1996 dsa/oper/local/oModify.c
~p--r--r--154/50 4756 Jul 30 00:53 1996 dsa/oper/local/oNav.c
~r--r--r--154/50 9035 Jul 30 00:53 1996 dsa/oper/local/oRead.c
7609 Jul 30 00:53 1996 dsa/oper/local/oRemove.c
12521 Aug 1 18:55 1996 dsa/oper/local/oSearch.c
7248 Jul 30 00:53 1996 dsa/oper/local/oUtils.c
-rwe rw-tw-154/50 8423 Aug 27 17:40 1996 dsa/oper/local/.make.state
-rw-rw-r--154/50 58560 Aug 27 17:38 1996 dsa/oper/local/oAdd.o
-rw-rw-r--154/50 52032 Aug 27 17:38 1996 dsa/oper/local/oBlock.o
-rw-rw-r=-154/50 1198 Aug 27 17:39 1996 dsa/opar/local/.nse_depinfo
; -rw-rw-r--154/50 57268 Aug 27 17:38 1996 dsa/oper/lecal/oCompare.o
-rw-rw-r--154/50 $6740 Aug 27 17:39 1996 dsa/oper/lecal/oList.o
-rw-rw-r-~154/50 $5504 Aug 27 17:39 1996 dsa/oper/local/oMain.o
~rwerw-r--154/50 57812 Aug 27 17:39 1996 dsa/oper/local/oModDn.o
-rw-rw-r--154/50 61332 Aug 27 17:39 1996 dsa/oper/local/oModify.o
-rw-rw-r--154/50 52032 Aug 27 17:39 1996 dsa/oper/local/oNav.o
-rw-rw-r--154/50 58204 Aug 27 17:39 1996 dsa/oper/local/cRead.o
srw-rw-r--154/50 56324 Aug 27 17:39 1996 dsa/oper/local/oRemove.o
-rw-rw-r--154/50 60356 Aug 27 17:39 1996 dsa/oper/local/cSearch.o
~rw-ri-r--154/50 $5328 Aug 27 17:39 1996 dsa/oper/local/oUtils.a
-rwXrwxr-x154/50 0 Sep 17 17:14 1996 dsa/oper/user/
-r--r--r--154/50 366 Jul 16 22:21 1996 dsa/oper/usar/Makefile
3387 Jul 16 22:21 1996 dsa/oper/user/USER.h
4668 Jul 16 22:21 1996 dsa/oper/user/uAbandon.c
3450 Jul 16 22:21 1996 dsa/oper/user/uAbort.c
-r--r--r--154/50 11905 Jul 28 19:40 1996 dsa/oper/user/uBind.c
~r=-r--r--154/50 10759 Jul 17 08:27 1996 dsa/oper/user/uBlock.c
8116 Jul 16 22:21 1996 dsa/oper/user/uMain.c
-r--r--r--154/50 8487 Apr 1 00:15 1996 dsa/oper/user/uStack.c
-r--r--r--154/50 S189 Jul 16 22:21 1996 dsa/oper/user/uUtils.c
-rw-rw-rw-154/50 4545 Aug 27 17:38 1996 dsa/oper/user/.make.state
-¥w-rw-r--154/50 50980 Aug 27 17:37 1996 dsa/oper/user/uAbandon.o
49356 Aug 27 17:38 1996 dsa/oper/user/ulbort.o
~rw-ru-r--154/50 600 Aug 27 17:38 1996 dsa/oper/user/.nse_depinfo
-rw-rw-r--154/50 65432 Aug 27 17:38 1996 dsa/oper/user/uBind.o
74048 Aug 27 17:38 1996 dsa/oper/user/uBlock.o
-rw-rw-r--154/50 71904 Aug 27 17:38 1996 dsa/oper/user/uMain.o
-rw-rw-r--154/50 51675 Aug 27 17:38 1996 dsa/oper/user/ultils.o
0 Jul 30 20:43 1996 dsa/oper/include/
3431 Jul 28 19:40 1996 dsa/oper/include/OPER.h
- rwxrr - x154/50 0 Sep 17 17:14 1996 dsa/oper/main/
-r--r--r--154/50 322 Jul 16 22:21 1996 dsa/oper/main/Makefile
4742 Jul 16 22:21 1996 dsa/oper/main/operMain.c
1202 Aug 27 17:41 1996 dsa/oper/main/.make.state
50416 Aug 27 17:41 1996 dsa/oper/main/operMain.o
102 Aug 27 17:41 1996 dsa/oper/main/ nse_depinfo
-r--r--r--154/50 267 Jul 16 22:21 1996 dsa/oper/Makefile
- rwxrwxr-x154/50 0 Sep 17 17:14 1996 dsa/oper/remate/
r--154/50 378 Jul 16 22:21 1996 dsa/oper/remote/Makefile
4655 Jul 29 05:22 1996 dsa/oper/remote/REMOTE.h
10034 Jul 18 23:38 1996 dsa/oper/remote/rAnalyse.c
§520 Jul 16 22:21 1996 dsa/oper/remote/rBlock.c
11980 Jul 28 19:40 1996 dsa/oper/remote/rDsa.c
6648 Jul 16 22:21 1996 dsa/oper/remote/rMain.c
11311 Jul 18 23:39 1996 dsa/oper/remote/rPrefix.c
~r--r--r--154/50 19528 Jul 28 19:40 1996 dsa/oper/remote/rService.c
|
Sep 26 15:56 1997 listing.3 Page 10 i
!
’
-r--r--r--154/50 3383 Jul 16 22:21 1996 dsa/oper/remote/rUtils.c |
~rw-rw-rw-154/50 5333 Aug 27 17:41 1996 dsa/oper/remote/.make.state ;
-rw-rw-r--154/50 58036 Aug 27 17:40 1996 dsa/oper/remote/rAnalyse.o
~rwe-rw-r--154/50 53248 Aug 27 17:40 1996 dsa/oper/remote/rBlock.o
~rw-rw-r-~154/50 702 Aug 27 17:40 1995 dsa/oper/remote/.nse_depinfo i
~rw-rw-r--154/50 61532 Aug 27 17:40 1996 dsa/oper/remote/rDsa.o i
-rw-rw-r--154/50 69308 Aug 27 17:40 1996 dsa/oper/remote/rMain.o ;
76068 Aug 27 17:40 1996 dsa/oper/remote/rPrefix.o H
75048 Aug 27 17:40 1996 dsa/oper/remote/rServica.o I
S1664 Aug 27 17:40 1996 dsa/oper/remote/rUtils.o :
0 Sep 17 17:14 1996 dsa/oper/stackif/ B
374 Jul 18 23:37 1996 dsa/oper/stackif/Makefile |
1722 Jul 18 23:37 1996 dsa/oper/stackif/STACKIF.h |
15758 Jul 18 23:37 1994 dsa/oper/stackif/dispSlave.c :
22533 Jul 18 23-37 1996 dsa/oper/stackif/stackGlue.c i
8149 Jul 18 23:37 1996 dsa/oper/stackif/stackGluei.c
3751 Jul 18 23:37 1996 dsa/oper/stackif/stacklnit.c
8612 Jul 18 23:37 1995 dsa/oper/stackif/stackMain.c
i - rw-Tw-rw-154/50 5103 Aug 27 17:17 1996 dsa/oper/stackif/.make.state
; -rw-rw-r--154/50 75428 Aug 27 17:37 1996 dsa/oper/stackif/dispSlave.o
! -rw-rw-r--154/50 72408 Aug 27 17:37 1996 dsa/oper/stackif/stackGlue o
[-rw-rw-r--154/50 516 Aug 27 17:37 1996 dsa/oper/stackif/.nse_depinfo
i -rw-rw-r--154/50 47848 Aug 27 17:37 1996 dsa/oper/stackif/stackGluei.o
; -rw-rw-r--154/50 54972 Aug 27 17:37 1996 dsa/oper/stackif/stackInit.o !
. -rw-rw-r--154/50 71728 Aug 27 17:37 1996 dsa/oper/stackif/scackMain.o !
- rWX WX -X154/50 0 Aug 24 19:44 1996 dsa/oper/asn/
873 Jul 16 22:21 1996 dsa/oper/asn/Makefile :
827 May 1 22:22 1995 dsasoper/asn/defs.asn i
-r--r--r--154/50 5491 Jul 16 22-21 1996 dsa/oper/asn/dapidu.asn !
Lrwxrwxrwx154/50 26 Aug 16 08:5] 1996 dsa/oper/asn/roseld.asn symbolic link to ../../stack/asn/roseld.asn :
| Lrwxrwarwx154/50 23 Rug 16 08-53 1996 dsa/oper/asn/dap.asn symbolic link to ../../stack/asn/dap.asn)
| Lrwxrwxrwx154/50 26 Aug 16 08:53 1994 dsa/oper/asn/dapdsp.asn symbolic link to ../../stack/asn/dapdsp.asn ;
’ LrwXrwxrwx164/50 23 Aug 16 08:53 1994 dsa/oper/asn/dsp.asn symbolic link te ../../stack/asn/dsp.asn :
. Lrwxraxrwx154/50 25 Aug 16 08:53 1996 dsa/cper/asn/upper.asn symbolic link to ../../stack/asn/upper asn
: Lrwxrwxrwx154/50 24 Aug 16 08:53 1996 dsa/oper/asn/info.asn symbolic link to/stack/asn/info.asn
: ~rw-rw-rw-154/50 1820 Sep 17 17:14 1996 dsa/oper/.make.state .
| 936 Sep 17 17:14 199% dsa/oper/.nse_depinfo
! 0 Aug 28 11:37 1996 dsa/scripts/
' 0 Aug 28 11:37 1995 dsa/seripts/init/
; 401 Jul 16 22:21 1996 dsa/scripts/init/Makefile
: 864 Jul 31 05:43 1996 dsa/seripts/inyr/inic
: -r--154/50 14902 Jul 16 22:21 1996 dsa/scripts/init/iniz.ater
) --154/50 14440 Jul 16 22:21 1996 dsasscripts/initsinit.cosine
. -154/50 11283 Jul 16 22:21 1994 dsa/scripts/init/init.dms
: -154/50 4948 Jul 16 22:21 1994 ts/init/iniz.edx
-154/50 1015 Jul 16 22:21 1996 ts/init/init. edi
-r--154/50 732 Jul 17 23:42 1995 dsa/scripts/init/init.general
~r--154/5¢C 1541 Jul 16 22:21 1995 dsa/scripts/init/:init.isocor
. --154/50 18348 Jul 28 22:48 1996 dsa/scripts/init/init.mhs
, ~r--154/50 1272 Jul 16 22:21 1996 dsa/seripts/init/imit.mosaic
! Sr--r--r--154/50 5048 Jul 16 22:21 1996 dsa/scripts/init/init.nadf
i 1422 Jul 16 22:21 1994 dsasscripts/init/imiz.pp
; 7660 Jul 16 22:21 1996 dsa/scripts/init/init.quipu
| 2155 Jul 16 22:21 1996 dsa/scripts/init/init.thern
| 1161 Jul 16 22:21 1996 dsa/scripts/init/init.umich
-r--r--r--154/50 371 Jul 16 22:2% 1995 dsa/scripts/init/init.dsp

Sep 26 15 56 1997 listing 3 Page i1
cp--r--r--154/50 470 2ul 16 22 11 1996 dsa scripTs. imit tnit schema
~rw-rw-rw- 154750 2921 Aug 27 17 30 199% dsa $CTIDTE 1nit make state
- rwxpar-x154/90 0 Aug 28 i1 37 1995 dsa scriptas
er--r--r--154/50 284 Jul 1k 22 11 1994 isa scripts.t Maxefi.e
r -154/50 1243 Cul 16 22 21 1996 Asa scripts/izest
154/50 9960 Jul 16 22 21 1794 1sa scripts
, 154750 8342 Jui 16 I2 11 1996 dsa scripcs,
i Are-v--r--154/50 9312 Jui 16 12 21 199% dsa scripts
©154/50 11189 Jul 30 I0 41 1996 dsa scripts
154/50 1678 Jul 16 22 21 1996 dsa scripts test
cr--re-r--154/50 11832 Jul 16 22 21 1996 daa scripts/test
~r--t--r--154/50 5801 Jul 16 12 21 1 sCriptsitest.
3971 Jul 18 00 40 scriptsit
-r--t--t 4168 Jul 18 70 40 SCTIpts Test testl
- rw-rw-tw-154/50 1811 Aug 27 17 10 SCTIPUS/esT . maKe atate
- rwxrwxr-x154/50 0 Aug 28 13 37 scripts/demo,
L rwnrwxrwx 154750 18 Aug 16 08 51 scripts/demo,dsa symbolic iink o bin dsa rfciics
Lrwxraxrax154/50 15 Aug 16 08 53 scripta/demo/init symbolic link o scripts imi
-r- 744 Jul 16 22 21 scripts/demo,Makefile
-r- 581 Jul 16 22 21 cripts/demo/addmgr
sr--r--r 188 Jul 16 22 2% cripts demo:demo
Sre-r--r--154/50 763 Sul 16 22 31 cripts. demo. demo apec
st--teer 528 Jul 16 22 11 scripts, demo run-dsa
-rw-rw-r--154/50 148852 Aug 16 99 49 ‘acTipts/demo /demo raw
- rw-rw-rw- 154750 1607 Aug 27 17 1 cripts, demo: make atate
- rwxrwxr - x154/50 0 Aug S 05 C1 scripes/dua,
1rwxrwxrwx154/50 18 Aug 16 78 S3 scripts/dua/dua symboliic link %o tin
er--r--r--154/50 238 Apr 29 05 14 scripts/dua Makefile
402 Feb 27 01 47 ripts/duasbind
~r--r--r--154/50 697 Apr 29 75 14 cripes/dua‘inme
~rwxrwxr-x154/50 0 Aug 28 11 17 scripts/data,
~r--r--r--154/50 441 Jul i scripts;data.Maketiie
154750 2511 Jul 2 addr
4913 Jul P scripts/data, addri
490 Jul P scripts;data. addr)
10880 Jul b scripts data. location
11999 Jul 21 cripts, data namesi
4465 Jui P scripts, data. namesix
73371 Jui 21 script L names2
9348 Jul 21 /names2x
6201 Jul P s ovgBank
510 Jul 21 . orgBankAd
53178 Jul pAl scripts/datasorgBrew
3552 Jul iz acripts. data. orgCham
55891 Jul 16 12 it . scripes, data.orgTech
17058 Jul 16 22 2% L argtour
24462 Jul 16 22 I orgTrans
44711 Jul 16 22 Jorganization
2742 Jui 16 22 2 scripts/daca. phonel
20775 Jul 16 I 21 scripts/data, phonel
1195 Jul 16 22 21 1794 dsa.scripts. data.
1146 Jul 16 22 I 1794 4sa scripts data
r--r--154/50 1156 Jul 16 22 21 1996 dsasscr
154750 750 Jul 16 22 21 1994 isa scripes-daca
Sr--r--re-154/50 $02 Jul 16 22 Il 1994 4sa scr.pts/data
~r-xr-xr-x154/50 2303 Jul 16 22 11 1996 isa scriptssdaca.
Sep 36 15 56 1997 liating } Pagae i3
~peer--r--154/50 541 22 21 139% dma scripts/data zrev -
“r--re-r--154750 657 i2 I1 1396 isa scripts data. zstats
-rw-rw-Tw- 154,50 4110 17 30 1994 isa scripts data. make state
rwxrwrr-x154/50] 11 37 1995 isa scriprssords
cre-re-r--154/50 455 22.21 1395 dsa scripts/iorgs Makefile
cr-er--r--154,50 505 2221 1996 dsa.scripte.nrgssimiti
sre-r--r--154/50 579 22 21 1996 dsa scriprscorgs initll
Sp-er--re-154/50 321 22 11 199% dsa.scr.pts orgs 1z
Sre-r--r--154/50 732 22 11 1796 dsa scripts.orgs b
sr--t--1--154/50 385 22 i1 1395 dsa scr.pts SIgs 3
Sr--r--r--154,50 858 32 21 199% dsa scripts/orgs 52
-r--154/59 4946 12 21 1994 1sa scr.pus orgs makel
<r--154/50 545 o orgs
-154/50 ais oo negs.
524 2o “rgs
47% PP args T
"4 PR srys =
P PP st3s
~u 2 sr3s n1Bank spec
s PR orgs >tBanxAd spe-
780 1 crgs s2Brew spec
454 PN 2rgs o1"hem spac
71 PR Srgs »1031p spet
~80 PHEPH >rgs »2Tach spec
T o 2rgs ozTour spec
T2 22 i orgs ~1TrARs spec
-rw-re-rw-154750 3912 PRt .9rgs make state
-rwxrwxs - 2154750 b o
' Lrwr rer rax 15450 13 38
0 Lrwxraxrax 154750 14 58
1 Lrwxraxrwx 154,50 5 8
| Lrwrzwxoex 154, 50 T4 28
| Lrwxrwxren154, 50 X 38
! LraxTwr k154,50 W 38
. 194 P
| 1884 2
i 3310 P
! 285 iz
i 1188 o2
| 495" 22
w27 P
26m4 b
| 2
1 “
| 2
i 3
! 2
i el Suy w2l i34 tts T.umicgs
! IndY Tl oteo2I Ciae sus cimings
! Y Jul ih 22 FERE
TV gul 14 2 PREN
nel Jul th i
693 Iul ak I 13

Sep 26 15:56 1997 listing.} Page 13
-r--r--r--154/50 747 Jul 16 22:21 1996 dsa/scripts/timings/wtime200K
-r--r--r--154/50 709 Jul 16 22:21 1996 dsa/scripts/timings/wtime20K
-r--r--r--154/50 725 Jul 16 22:21 1996 dsa/scripts/timings/wtimeS0K
- rw-rw-rw-154/50 5194 Aug 27 17:30 1996 dsa/scripts/timings/.make.state
- rwxrwxr-x154/50 0 Aug 28 11:37 1996 dsa/scripts/aliases/
~r--r--r--154/50 354 Jul 16 22:21 1996 dsa/scripts/aliases/Makefila
r--r--154/50 2623 Jul 16 22:21 1996 dsasscripts/aliases/README
7952 Jul 16 22:21 1996 dsa/scriprs/aliases/alias.reset
10558 Jul 16 22:21 1996 dsa/scripts/aliases/alias.satup
1681 Jul 16 22:21 1996 dsa/scripts/aliases/aliasresetl
-x--x--r--154/50 3682 Jul 16 22:21 1996 dsa/scripts/aliases/allasresetd
<r--r--r--154/50 10075 Jul 30 20:42 1996 dsa/scripts/aliases/aliastestl
r--x--154/50 7201 Jul 19 00:41 1996 dsa/scripts/aliases/aliastest2
-r--r--r--154/50 7695 Jul 18 00:41 1996 dsa/scripts/aliases/aliastestd
-r--r--r--154/50 7322 Jul 16 22:21 1996 dsa/scripts/aliases/aliastestd
-r--r--r--154/50 4677 Jul 18 00:41 1996 dsa/scripts/aliasas/aliastest$
-r--r--x--154/50 3673 Jul 18 00:41 1996 dsa/scripts/aliases/aliastesté
-rw-rw-rw-154/50 2370 Aug 27 17:30 1996 dsa/scripts/aliases/.make.state
Lrwxrwxrwx154/50 12 Aug 16 08:53 1996 dsasscripts/bin symbolic link to ../dx500/bin
Lrwxrwxrwx154/50 4 Aug 16 08:53 13996 dsa/scripts/scripts symbolic link te init
Lrwxrwxrwx154/50 14 Aug 16 08:53 1996 dsa/scripts/tools symbolie link to ../dx500/tools
-r--r--r--154/50 325 Jul 16 22:21 1996 dsa/scripts/Makefile
-r--r--r--154/50 2534 Feb 26 01:48 1996 dsa/scripts/BETA.AGREEMENT
-rw-rw-rw-154/50 2482 Aug 28 11:37 1996 dsa/scripts/.make.srate
-rw-rw-r--154/50 1286 Aug 28 11:37 1996 dsa/scripts/.nse_depinfo
lrwxrwxrwx154/50 9 Aug 16 08:53 1996 dsa/dxS00 symbolie link to ../dx500
Llrwxrwxrwx154/50 9 Aug 16 08:53 1996 dsa/stack symbolic link te ../rstack
-rw-rw-r--154/50 1124 Aug 21 12:45 1996 dsa/Makefile
~rwXrwxr-x154/50 0 Aug 20 14:13 1996 dsa/utils/
- rwxrwxr-x154/50 0 Aug 24 20:22 1996 dsa/utils/ingres/
-r--r--r--154/50 374 Jul 16 22:20 1996 dsa/utils/ingres/Makefile
-r--r--r--154/50 16008 Jul 16 22:20 1996 dsa/utils/ingres/setupDB.sc
-rw-rw-rw-154/50 837 Aug 24 20:22 1996 dsa/utils/ingres/.make.state
“rw-rw-r--154/50 23817 Aug 21 15:22 1996 dsa/utils/ingres/setupDB.c
—rw-rw-r--154/50 27380 Aug 21 15:22 1996 dsa/uctils/ingres/setupDB.o
-rw-rw-r--154/50 341 Aug 21 15:22 1996 dsa/utils/ingres/.nse_depinfo
-rw-rw-r-~154/50 868 Aug 24 1996 dsa/utils/Makefile
- rwxrwxr-x154/50 0 Aug 28 1996 dsa/utils/tools/
-r--r--r--154/50 644 Jul 16 1996 dsa/utils/tools/Makefile
895 Jul 16 1996 dsa/utils/tools/dxdelete
3574 Jul 16 1996 dsa/utils/tools/dxexporc
3283 Jul 16 1996 dsa/utils/tools/dxgetnodes
-r--r--r--154/50 8072 Jul 16 1996 dsa/utils/tools/dxhelp
-r--r--r--154/50 4242 Jul 16 1996 dsa/utils/tools/dximport
974 Sul 16 22:20 1996 dsa/utils/rools/dxnewdb
~r--r--r--154/50 3019 Jul 16 22:20 1996 dsa/utils/tools/dxprepare
~r--r--r--154/50 1208 Jul 16 22:20 1996 dsa/utils/tools/dxprintfield
881 Jul 16 22:20 1996 dsa/utils/tools/dxreload
1606 Jul 16 22:20 1996 dsa/utils/tools/dxtranslate
1710 Jul 16 22:20 1396 dsa/utils/tools/dxtunedb
11470 Jul 16 22:20 1996 dsa/utils/tools/dxupdate
680 Jul 16 22:20 1996 dsa/utils/tools/xaddfields.awk
678 Jul 16 22:20 1996 dsa/utils/tools/xaddquotas.awk
r--154/50 $822 Jul 16 22:20 1996 dsa/utils/tools/xcheckspac.awk
r--x--154/50 960 Jul 16 22:20 1996 dsa/utils/tools/xchoplast.awk
-r--r--r--154/50 1404 Jul 16 22:20 1996 dsa/utils/tools/xcodes2awk.awk
Sep 26 15:56 1997 listing.3 Page 14
~r--r--r-~154/50 4541 Jul 16 22:20 1996 dsa/utils/tools/xdat2ddx.awk I
--r--154/50 5517 Jul 16 22:20 1996 dsa/utils/tools/xdat2mod.awk
-r--r--154/50 5522 Jul 16 22:20 1996 dsa/utils/tools/xddx2dat.awk ‘
r--r--154/50 1341 Jul 16 22:20 1996 dsa/utils/tools/xdelete. awk
~r--r--154/50 277 Jul 16 22:20 1996 dsa/utils/tools/xgerdit.awk
-r--r--r--154/50 5461 Jul 16 22:20 1996 dsa/utils/tools/xddx2del.awk
-r--r--r--154/50 §836 Jul 16 22:20 1996 dsa/urils/tools/xddx2pop.awk H
-r--r--r--154/50 7882 Jul 16 22:20 1996 dsa/ucils/tools/xlog2ddx.awk I
~r--r--r--154/50 4132 Jul 16 22:20 1996 dsa/utils/tools/xmerge.awk |
i ~r--r--r--154/50 8122 Jul 16 22.21 1996 dsa/utils/tools/xmod2pop.awk i
i ~r--r--r--154/50 S24 Jul 16 22:21 1995 dsa/utils/tools/xprefixddx.awk ‘
) ~r--r--r--154/50 2360 Jul 16 22:21 1996 dsa/utils/tools/xreload.awk
‘ ~r--r--r--154/50 909 Jul 16 22-21 1996 dsa/utils/tools/xtpt2comma. awk |
| ~r--g--r--154/50 409 Jul 16 22:21 1996 dsa/utils/tools/xunformat.awk i
¢ ~r--r--r--154/50 §786 Jul 16 22:21 1996 dsa/utils/tools/xupdate.awk !
‘ ~r--r--r--154/50 3013 Jul 16 22:20 1996 dsasutils/tools/dxbackup
j -rw-rw-rw-154/50 5572 Aug 27 17:30 1996 dsa/utils/tools/.make.state ‘
| Lrwxrwrrwx154/50 8 Aug 16 1996 dsa/utrils/dx500 symbolic link to ../dx500 |
! ~rwxrwxr-x154/50 0 Aug 28 1996 dsa/utils/snmp/ 1
Lrwxrwxrwx154/50 38 Aug 16 1396 dsa/utils/snmp/dxmonitor symbolic link to ../../../dxmonitor/dwmonitor/damonitor !
-r--r--r--154/50 450 Aug 5 04:42 1996 dsa/utils/snmp/Makefile !
~r--r--r--154/50 910 Jul 16 1996 dsa/utils/snmp/README
i -r--r--r--154/50 5870 Jul 16 22:21 1996 dsa/urils/snmp/asnldec.c !
| -p--r--r--154/50 566 Jul 16 22.21 1996 dsa/utils/snmp/dxsnmp
| -r--r--r--154/50 1443 Jul 16 22:21 1996 dsa/utils/snmp/mib.h
! -r--r--r--154/50 4492 Jul 16 22:21 1996 dsasutils/snmp/snmplib.h
| -r--r--r--154/50 4669 Jul 16 22:21 1996 dsa/utils/snmp/walker.c !
: ~rw-rw-tw-154/50 1761 Aug 27 18:05 1996 dsa/utils/snmp/.make.state
' ~TW-TW-T 14516 Aug 27 18:05 1996 dsa/utils/snmp/walker.o
' -rw-rw-T 10124 Aug 27 18:05 1996 dsasutils/snmp/asnldec.o
; ~rw-rw-r--154/50 377 Aug 27 18:05 1996 dsa/uctils/snmp/.nse_depinfo
' -rwoxruner - x154/50 0 Aug 28 11:37 1996 dsa/utils/cmip/
. Lrwxrwxrwx154/50 26 Aug 16 08:53 1396 dsa/utils/cmip/Htep.c symbolic link to ../stack/network/Htcp. ¢
! -r--r--r--154/50 495 Jul 18 23:44 1996 dsa/utils/cmip/Makefile
! ~r--r--r--154/50 508 Jul 18 23:44 1996 dsa/ut:ls/cmip/README
! 16487 Jul 18 00:38 1996 dsa/utiis/cmip/cmipmgr.c
! 19672 Jul 18 00:38 1996 dsa/utils/cmip/dsa_mgr_mib.c
. 644 Jul 16 22:21 1996 dsa/utils/cmip/dxcmip
! 627 Jul 18 00.38 1996 dsa/utils/cmip/mfix.c
i -rw-rw-rw-154/50 3001 Aug 27 18:05 1996 dsa/urils/cmip/.make.state
rw-rw-o--154/50 41924 Aug 27 18:05 1995 dsasutils/cmip/cmipmgr.o
Crw-rw-r--154/50 51184 Aug 27 18:05 1996 dsa/utils/cmip/dsa_mgr_mib.o
: -rw-rw-r-~154/50 558 Aug 27 18:0% 1996 dsa/urils/cmip/.nse_depinfo
-rw-tw-r--154/50 2788 Aug 27 18:05 1996 dsa/utils/cmip/mfix.o
! —rw-rw-r--154/50 31920 Aug 27 18:05 1996 dsa/utils/cmip/Htcp.o
} Lrwxrwxrwx154/50 9 Aug 16 08:51 1996 dsa/utils/bin sympolic link to dx500/bin
' - rwxrwxr-x154/50 0 Aug 28 11:37 1996 dsa/utils/disp/
! Lrwxrwxrwx154/50 18 Aug 16 0853 1996 dsa/utils/disp/dispCopy symbolic link to ../../bin/dispCopy
: or--r--r--154/50 16093 Jul 16 22:21 1996 dsasutils/disp/Htcp.c
! ~x--r--r--154/50 $23 Jul 16 22:21 1396 dsasutils/disp/Makefile
: -r--r--7r--154/50 495 Jul 16 22:21 1996 dsa/ucils/disp/README
-r--r--r--154/50 542 Jul 16 22:21 1996 dsa/utils/disp/dbif.h
-p--r--r--154/50 7407 Jul 18 23:44 1996 dsa/utils/disp/dbif dap.c
i -p--r--r--154/50 8870 Jul 16 22:21 1996 dsa/utils/disp/dbif_test.c
! -p--r--r--154/50 165 Jul 16 2221 1996 dsa/ucils/disp/dispCopy.cfg
; -r--r--r--154/50 5390 Jul 16 22:21 1996 dsasutils/disp/master.c

Sep 16 15:56 1997

listing 1

Page 15

-r--r--r--154/50

-re-r--r--154/50 8174 Jul 1% 22 21 1994 dsa utils. disp/mconfig =
-r--r--r--154,50 8428 Jul 16 22 21 1996 dsa.utils. disp mupdate -
~r--r--r--154/50 1864 Jul 16 22 11 199% 4sa utils,disp shadow h
- rw-rw-rw-154/50 4779 Aug 27 18-04 1996 dsa,utils.disp’ make state
Sew-rw-r--154/50 41728 Aug 27 18 04 1996 dsa.utils.dispidbif_lap o
~rw-rw-r--154/50 49656 Aug 27 18 04 1996 isa. utiis disp master >
Srw-rwer--154/50 6311 Aug 27 18 24 1396 dsacutils.disp/ nse_lepinto
STWerw-r--1%4/50 52144 Aug 27 18 04 1996 isa.utils/disp mconfig o
crw-rwer--154/50 49400 Aug 27 18 sutila‘disp. mupdate 2
~rw-rw-r--154/50 31920 Aug 27 18 sutiis/disp. Hicp
- rwxrwxr-x154/50 0 Aug 28 11 17 1996 dsa‘utils/dua;
Irwxrwxrwx154/50 21 Aug 16 08 S3 1996 dsa.utils dua siic link o tor dua rf-137%
-r--r--r--154/50 243 Jul 16 21 21 1996 dsa ut:la/dua-
ST--r--r--154/50 679 Jul 16 22:21 1996 dsa-utiis dua
srw-rw-Tw-154/50 868 Aug 27 17 10 1996 dsa ut:ils/dh maks state
- rwxrwxr-x154/50 O Aug 28 11 37 1996 dsa-utils. ac t
Lrwxrwxrwx154/50 24 Aug 16 08 53 1996 dsa’ut:ls/actest. BasicAC h symbolic iink =3 atack ac BasictAC &
Trwxrwxrwx154/50 28 Aug 14 08 53 1996 dsa.utils acteat README symbo.iz iink <o
Lrwxrwxrwx154/50 19 Aug 16 08-5) 1996 dsa.ucils/ac t.ac ¢ symbclic link to .
1rwxrwxrwx154/50 19 Aug 16 08:53 sutlls/actest/ac h symbolic link %o
1rwxrwxrwx154/50 23 Aug 16 08-53 Jutils/actest. acdump ¢ symbolic iink %o
lrwxrwxrwx154/50 16 Aug 16 98 91 t actest symbolic link o ,
lewxrwxrwx154/50 2) Aug 16 08 93 Ctest. actest ¢ symbollc iink *o
lrwxrwxrwx154/50 24 Aug 16 08 S3 Tt actest in wymbolic¢ link to
lrwxrwxrwx154/50 26 Aug 16 08 53 1996 fea/utiis actest basicAC asn symbollc link =
“r--r--r--154/50 461 Aug 1 18 56 1996 dma/utils/actest Makafile
lowxrwxrwx154/50 22 Aug 16 08 53 1995 dsa/utiis/actest acadd ¢ symbo.ic iink %5 stack ac acadd ¢
“rw-rw-rw-154/50 2979 Aug 27 18.06 Ctest make state
-rw-rw-r--154/%0 71092 Aug 27 18-0% /utlls/actest. actest o
~rw-rw-r--154/50 87068 Aug 27 18 05 1996 dsa utils/actest/ac o
~rw-rw-r--1%4/%0 549 Aug 27 18 06 1994 dsa/ut: ase_depinfo
“rw-rw-r--154/50 68156 Aug 27 18 05 1994 dea.util st acadd s
-rw-rw-r--154/50 46044 Aug 27 Jtils/actest acdump o
-rwxrwxr-x154,50 0 Aug 28 sutilissrubix/
-rw-rw-r--154/50 3194 Aug 26 sutiis/rubix. Makefiie
- rw-rw-rw-154,50 131% Aug 27 utils/rubix/ make state
-rw-rw-r--194/50 10623 Aug 27 sutils/rubix/setuplB e
-rw-rw-r--154/50 18954 Aug 27 utiis/rubix; setupdB <
~rw-Tw-r--154/50 18954 Aug 27 utils. rubix;setupD3 pc
lrwxrwxrwx154/50 17 Aug 22 utils/rubix, 2z symbol.c link %o
-rw-tw-r--154/50 237 Aug 26 ‘utiis/Tubix drep sql
-rw-rw-r--154/50 342 Aug 7 cutils. rubix, nse_dispinfo
Irwxrwxrwx154/50 25 Aug 26 FUTils rublx, where awk symboiic link "~ Jip rubix wnere awx
~rw-rw-r--154/50 129 Aug 26 utiisirubix’cr _f1t sqi
~Tw-rw-r--154/50 33284 Aug 17 utils rubix. setupdB o>
-rw-rw-r--154/50 183 Aug 27 utlls. Tubix, de.ete $qi
~rwxrwxr-x154/50 0 Aug 2 :
~rw-rw-r--154/50 323196 Aug 28 oper a
~rw-rw-r--154/%0 497330 Aug 27 .schema a
-rw-rw-r--154/50 166436 Aug 27 Jaccess a
-Tw-Tw-r--154/50 1618942 Aug 28 smgmt a
~Tw-rw-r--154/50 680014 Aug 27 ‘aupporz a
-rw-rw-r--154/50 16931852 Aug 28 15 1 siibodip a
-r-er--r--154/50 8602 Aug S 04 37 1996 dsa hangeiug
“r--r--r--154/50 31149 Jul 31 06 25 199 dsa 0X$52-V) D
-rwxrwxr-x154/50 0 Sep 17 17 14 1994 isa accass
!
!
i
Sep 26 15:56 1997 listing ! Page l6
Irwnrwxrwx154/50 21 Aug 16 98 51 1994 dsa access/BasicAC h symboliz link o stack ac BasicAl 4
Lrwxrwxrwx154/56 16 Aug 16 08 5] 1994 dsasaccess/ac @ symbolic link o stack ac ac =
lIrwxrwxrwx154/50 16 Aug 1 dsa.access ac h symbolic iink %2 stack ac ac b
1 rwxrwxrwx154,50 20 Aug 16 98 51 1994 dsasaccesssacdump o symps.ic link %o srack ac acdump -
1 rwxrwxrwx154,50 13 Aug 16 28 51 tasicAC asn symoo. nk no srack ac basi:AC asn
“re-t--r--154/5%0 327 Aug 1 148 54 Maxel1lie
sre-r--r--154/50 26408 Aug 5 91 30
-r--r--r-~154/50 23650 Aug S 91 30
Lrwxrwxrwx154,50 19 Aug 16 58 °3 Lirk to 27ack A acadi -
Sr--r--r--154:50 “14 Aug S 21 30 dsa;access acDump -
- rw-rw-rw-154/50 3378 Aug 27 17 43 {996 dsa access’ make state
. Srw-twer--154750 7B6B4 Aug 27 17 42 1994 dsa access acMain -
! Srworw-r--154/50 72492 Aug 17 17 42 1994 dsa aczess acRu.es o
“rwerw-r--154/50 401 Aug 27 17 42 1994 isa.accexs nse_jep:into
Srw-rw-r--154/50 58884 Aug 27 17 42 1994 Jdsa ictess acDump o
Srw-rw-r--154,50 87024 Aug 27 17 42 1396 dsa.access ac o
-rw-rw-r--154/50 68108 Aug 27 17 43 1396 dsa ac-ess. acaad >
Lrwxrwxrwx154/50 9 Aug 16 38 S
- rwxrwxr-x154/50 0 Aug 7 18 76
S rwxrwxr-x154,50 1423 Jun 24 21 I9
~rwxrwxr-x154/50 0 Aug S 05
~rwxrwxr-x154/50 9 Aug 17 18 96
-r--r--r--154/50 2623 Jul 22
[“re-r--r--1%4,50 7952 Jul PPN
-g-~r--r--154/50 10558 Jul 222
-r--r--r--154/50 1681 Cuj 102
-r--r- 1682 Jul 222
Sr--r- 10975 Jul 20 4
| -r--r--154/50 7201 Juil 00 4
| -r--r--r--154/50 7695 Jui 20 4
| “r--r--r--154/50 7122 Jul a2
. “r--r--r--154/50 4677 Cul 50 4
-r--r--r--154/50 1673 Jul 204
- TWXIWXr-x154/50 0 Aug 18 9
~rexr-xr-x154/5%0 $02 Jui 22
-r-xr-xr-x154,50 2303 Jul a1 2
' Sr-xr-xr-x154/50 657 Jul 202
-r--r--r--154/50 25311 Jul 1 23
-re-r--r--154/50 4933 Jul 22 3t
-r--r-~r--1%4/50 490 Jul 16 22 21
1080 Jul 14 22 It
11999 Jul 14 2
-r--r--r--154/50 4465 Jul 1% :

sre-re-r--154/5%0
~r--r--r--154759
sTe-r--r--154/50

sr--r--r--154/5%0
-r--r--r-~154/50

cr--r--154;50
“r--r--r--154/50
sr--r--r--154,50
cr--r--r--154,50

20

2 0

PR

2 2l

2 ar ~rgBank

22 2 rrjBarxAd

PPN

22 1%

22 23

22 21

22 ar3Trans
15 22 2% srgar.za%.:n
16 22 21 -phonel
16022 22 phonel

22 21 i

1376 4x5C7 rest data ti®

114

Sep 26 15:56 1997 1isting.} Page 17
-r--r--r--154/50 1146 Jul 16 22:21 1996 dxS00/test/daca/titlelx
r--r--154/50 1150 Jul 16 22:21 1996 dxS00/test/data/title
r--r--154/50 750 Jul 16 22:21 1996 dxS00/test/data/titla2x
-rwXxrwxr-x154/50 0 Aug 27 18:06 1996 dxS00/test/orgs/s
-r-xr-xr-x154/50 496 Jul 16 22:21 1996 dx500/test/orgs/makeOrgl
-r-xr-xr-x154/50 565 Jul 16 22:21 1996 Ax500/test/orgs/makeorglo
~r-xr-xr-x154/50 815 Jul 16 22:21 1996 dx500/test/orgs/makeOrygloo
-r-xr-xr-x154/50 624 Jul 16 22:21 1996 4x500/fest/orgs/makeOrg20
-r-xr-xr-x154/50 875 Jul 16 22:21 1996 dx500/ctest/orgs/makeorg200
-r-xr-xr-x154,50 745 Jul 16 22:21 1996 dx500/test/orgs/makeOrg50
-r-xr-xr-x154/50 2008 Jul 16 22:21 1996 dx500/test/orgs/makePop
<r--r--r--154/50 605 Jul 16 22:21 1996 dx500/test/orgs/initl
-r--r--r--154/50 670 Jul 16 22:21 1996 dx500/test/orgs/initl0
923 Jul 16 22:21 1996 dx500/test/orgs/initl00
732 Jul 16 22:21 1996 dx500/test/orgs/init20
985 Jul 16 22.21 1996 dx500/test/orgs/init200
858 Jul 16 22:21 1996 dx500/test/orgs/init50
717 Jul 16 22:21 1996 dx500/test/orgs/ozBank.spec
725 Jul 16 22:21 1996 dx300/test/orgs/ozBankAd. spac
780 Jul 16 22:21 1996 dx500/test/orgs/ozBrew.spec
654 Jul 16 22:21 1996 dx500/test/orgs/ozChem.spec
“r--r--r--154/50 718 Jul 16 22:21 1996 dx$00/test/orgs/ozCorp.spec
~r--r-~r--154/50 780 Jul 16 22:21 1996 dx500/test/orgs/ozTech.spec
717 Jul 16 22:21 1996 dx500/test/orgs/ozTour.spec 1
~r--r--r--154/50 722 Jul 16 22:21 1996 dxS00/test/orgs/czTrans.spec
-rwxrwxr-x154/50 0 Aug 27 18:06 1996 dxS00/test/timings/
3886 Jul 16 22:21 1996 dxS00/test/timings/timel00a
3918 Jul 16 22:21 1996 dx500/test/timings/timel00b
980 Jul 16 22:21 1996 dx300/test/timings/timel00c
-re-x--r--154/50 1385 Jul 16 22:21 1996 dx500/test/timings/timel0a
-r--r--r--154/50 4857 Jul 16 1996 dx500/test/timings/timela
627 Jul 16 1996 dx500/test/timings/timelb
2664 Jul 16 1996 dx$00/test/timings/timelc i
1116 Jul 16 1996 dx509/test/timings/timeld :
2809 Jul 16 1996 dx$500/test/timings/timels |
5189 Jul 16 2 1996 dx500/test/timings/time200a |
5107 Jul 16 2 1996 dx500/test/timings/time200b |
-r--r--r--154/50 990 Jul 16 22:21 1996 dx500/test/timings/time200c |
-r--r--r--154/50 1137 Jul 16 22:21 1996 dx500/test/timungs/tima20a |
1013 Jul 16 22:21 1996 dx500/test/timings/time20b i
-r--r--r--154/50 953 Jul 16 22:21 1996 dx500/test/timings/time20c |
-r--r--r--154/50 2661 Jul 16 22:21 1996 dxS00/test/timings/timeS0a i
2683 Jul 16 22:21 1996 dx500/test/timings/timeS0b |
969 Jul 16 22:21 1996 dx500/test/timings/timeS0c |
737 Jul 16 22:21 1996 dx500/test/timings/wtimal00K !
-r--r--x--154/50 663 Jul 16 22:21 1996 dx500/test/timings/wtimelOK
~r--r--r--154/50 653 Jul 16 22:21 1996 dx500/test/timings/wtimelk :
154/50 747 Jul 16 22:21 1996 dx500/test/timings/wtime200K !
-r--r--r--154/50 709 Jul 16 22:21 1996 dx500/test/timings/wtime20K
-r--r--r--154/56 725 Jul 16 22:21 1996 dxS500/test/timings/wtimeSOK '
Lrnerwxrwx1$4/50 13 Aug 27 18:06 1996 dx500/test/timings/initl symbolic link to ../orgs/initl '
Lrwxrwxrwxl$4/50 14 Aug 27 18:06 1996 dx500/test/timings/in1tl0 symbolic link to ../orgs/initl0 !
Lrwxrwxrwx154/50 15 Aug 27 18:06 1996 dx500/test/timings/init100 symbolic link to ../orgs/initl00 ‘
1rwxrwsrwx154/50 14 Aug 27 18:06 1996 dx500/ctest/timings/init20 symbolic link to ../orgs/init20 :
Lrwxrwxrwx154/50 15 Aug 27 18:06 1996 dxS500/test/timings/init200 symbolic link to ../orgs/init200
Lrwxrwxrwx154/506 14 Aug 27 18:06 1996 dxS00/tesc/timings/init50 symbolic link to ../orgs/init50 ;
I
13
,
I
i
|
]
Sep 26 15:56 1997 1listing.3 Page 18 i
|
- PWXTWXI-X154/50 0 Aug 28 14:39 1996 AxS500/ctest/world/ ;
-rwxrwxr-x154/50 317 Oct 20 00:59 1595 4x500/test/world/cadsIIT
“rw-rw-r--154/50 799 Oct 25 06:34 1995 dx500/test/world/dcphone. spec
~rw-rw-r--154,50 980 Jul 21 17:43 1996 dx500/rest/world/init
-rw-rw-z--154/50 7123 Oct 19 23:04 1995 dx500/test/world/misx.codes)
“rw-r--r--15¢/50 3636 Apr 3 04:42 1996 dx300/test/werld/init .mis
“rw-rw-t-~154/50 909 Oct 25 07:24 1995 dx500/test/world/product.spec
- rwxrwxr-x154/50 418 Oct 24 20:21 1995 dx500/test/world/mis
Lrwxrwxrwx154/50 18 Aug 16 08:54 1996 dx500/test/world/dsa symbolic link to ../bin/dsa.rfcl006
- rwXIrwxr-x154/50 374 Jun 29 20:21 1995 dx500/test/world/army
- ruXrwxr-x154/50 317 Oct 20 00:59 1995 dx500/test/world/dcphone
-rw-r--r--154/50 554 Oct 25 21:47 1995 4x500/test/world/army.codes
-rw-rw-r--154/50 1344 Oct 25 06:35 1995 dx500/test/world/misx.spec .
- rwxrwxr-x154/50 317 Oct 20 00:56 1995 4x500/rest/world/product
-rw-rw-r--154/50 1736 Oct 25 06:34 1995 dx500/test/world/cadsIII.spec
~rw-r--r--154/50 2414 Apr 3 04:42 1996 4x500/test/world/init.product
-rw-rw-r--154/50 224404 Mar 3 01:27 1995 dx500/tesct/world/product.raw .
~rw-rw-r--154/50 5458 Apr 3 04:43 1996 dx500/test/world/init.cads !
-rw-rw-r-~154/50 1262 Oct 25 08:02 1995 dxS500/test/world/armyx.spec
- rw-rw-r--154/50 1262 Apr 3 03:15 1996 dAxS500/test/world/init.army
“rw-r--r--154/50 2369 Jul 16 22:41 1996 dxS00/test/world/init.dcphone i
~rwxrwxr-x154,50 299 May 2 23:05 1995 dx500/cest/world/demo i
-Tw-rw-r-~154/50 832 Oct 25 0635 1995 dxS00/test/world/demo. spec '
~rwxrwxr-x154/50 375 Apr 3 05:45 1996 4x500/test/world/makeWorld :
- rw-rw-r--154/50 573 Apr 3 05:46 1996 dx300/test/world/init2 i
Lrwxrwxrwx154/50 14 Aug 16 08:54 1996 dx300/test/world/dsatep symbolic link to ../bin/dsa.tcp
-rwxrwxr-x154/50 25707 Apr 3 03:28 1996 dxS00/test/world/dx500dua.cfg
~rwXrwxr-x154/50 516 Apr 23 03:21 1996 dxS00/test/world/init.dcsec
-rwer--r-~154,50 0 Oct 25 22:37 1995 dxS00/tesc/DXS00-TEST-DIR
Lrwerwxrwx154/50 10 Aug 16 08:54 1996 dx500/test/scripts symbolic link to ./scripes
Lrwxrwxrwx154/50 6 Aug 16 08:54 1996 dx300/test/bin symbolic link to ../bin
~rwRrwir-x154/50 0 Aug 28 14:39 1996 dx500/demo/
~r-xr-xr-x154/59 388 Jul 16 22:21 1996 x500/demo/demo
~r-xr-xr-x154,50 528 Jul 16 22:21 1996 dx500/demo/run-dsa
Srw-rw-r~~154,50 148852 Aug 16 09:49 1996 dx500/demo/demo.raw
~r--r--154/50 763 Jul 16 22:21 1996 dx500/demo/demo. spac
-rw-rw-r--154/59 954 Aug 28 13:52 1996 dx500/demo/init
Lrwxrwxrwal$4/50 18 Aug 27 18:06 1996 dx500/demo/dsa symbolic link to ../bin/dsa.rfcl006
“rwerw-r--154/50 33 Aug 20 18:49 1996 dx500/demo/z
~rwerw-r--154/50 66 Aug 26 18:22 1996 dx300/demo/a
~rw-rw-r--154/50 187132 Aug 26 18:25 1995 dxS00/demo/demo.dat
-rw-rw-r-=154/50 978 Aug 26 19:17 1996 00/demo/testd
~rw-rw-r--154/50 9960 Jul 16 22:21 1996 @x300,demo/testl
-rw-rw-r--154/50 8344 Aug 27 18:35 1996 dx500/demo/testl
~rw-rw-r--154/50 6335 Aug 28 09:50 1996 dx500/demo/tast
~p--r--r--154;50 9212 Jul 16 22:21 1996 Ax500/demo/testl
~rw-rw-r--1%4/%50 864 Aug 28 11:15 19946 dxSC0/demo/zinit
-rw-rw-x--154/50 931909 Aug 26 18:31 1996 dx500/demo/zdemo.pap
~rwerw-r--154/50 174 Aug 26 18:21 1996 ix590/demo/demo . pop
-rw-rw-r--154,50 3708 Aug 28 13:53 1994 dx500/demo/log. rubix
—ITW-TwW 11 Aug 26 18:27 1996 dx500/demo/damol.dat
-rw-rw-r--154/50 3692 Aug 26 18:27 1996 dx500/demo/demo2.dat
-rw-rw-r--154/50 3180 Aug 2B 13:55 1994 4x500/demoslog.rubixl
- rwxrwxr-x154/50 0 Sep 17 17:14 1996 dx300/bin/
-rwxrwxr-x154/50 2236416 Sep 17 17:14 1996 dx500/bin/dsa.rfc1006
~rwrrwxr-x154/50 262144 Aug 27 18:05 1996 dx500/bin/snmpWalker

115

Sep 26 15.56 1997 listing 1 Page 13

-prwxrwxr-x154/50 663552 Aug 27 1996 dxS00/bin cmipMgr

-pwxrwxr-x154/50 352256 Aug 27 1994 dx500.bin/actest

- Twxrwxr-x154/50 0 Aug 27 1994 dx500. tools/

-r-xr-xr-x154/50 3011 Jul 16 1995 dx500-tools dxbackup

-r-xr-xr-x154/50 895 Jul 16 1996 dx500. rools dxdeletae

-r-xr-xr-x154/50 31574 Jul 16 1996 d4x500'toole/ dxexpore

-r-xr-xr-x1i54/50 3283 Jul 16 1996 dx500 tools. dxgetnodes

-r-xr-xr-x154/90 8072 Jul 1§ 1996 dx500 tools. dxneip t
-r-xr-xr-x154/50 4242 Jul 16 1996 dx508 zoals:deimpors !
-r-xr-xr-x154/50 974 Jul 1% 1996 dx5C0 tooly/dxnewdd

-r-xr-xr-x154/50 1019 Jul 1% 1996 dx500/%>0is/ dxprepare

-r-xr-xr-x154/50 1208 Jul 16 1996 dx50C tools, dxprintfieid

~r-xr-xr-x154/50 881 Jul 16 1996 dxS00. tocls dxrsload

-r-xr-xr-x154/50 1606 Jul 16 1996 dx500 tools, dxtranslate

-r-xr-xr-x154/50 1710 Jul 16 1996 dx500/tools/dxtunedb

-r-xr-xr-x154/50 11470 Jul 16 1996 dx50%/toois, dxupdate

-f--r--r--154/50 680 Jul 16 1996 dx500, tools/xaddfields awk

“p--r--r--154/50 678 Jul 16 1996 dx500:tools/xaddquotes awk

S822 Jul 16 23 20 1996 dx500/tocls/xcheckspec awk
960 Jul 16 22:20 19946 dx500/toois,xchoplast awk
1404 Jul 16 22 20 1996 dx300/tdols/xcodeslawk awk
4541 Jul 16 22°20 1996 dxS00/toolssxdatlddx awk
§517 Jul 16 22:20 1996 dx500/tools/xdatimod awk
5522 Jul 16 2220 1996 dx500/tools/xddxidat awk
S461 Jul 16 22 20 1996 dx500/rtools/ xddxldel awk
-r--r--r--154/50 £836 Jul 16 22.20 1996 dx500/tools/xddx2pop awk
-r-~g--r--154/50 1341 Jul 16 22-20 1996 dxS500'tools/xdelets awk
-r--r--r--154/50 277 Jul 16 22 20 1994 dx500/toola/xgetdit awk

-r--r--x-
-r--r--£--154/50
sr--r--r--154/50
-fe-r--r-
~r--r--r--154/50
-r--r--r--154/50

-Fe-r--r~ 7882 Jul 16 22 10 1996 dx500/tools. xloglddx awk
“re-r--T- 4132 Jul 16 22 20 1996 dx50C/tcola/xmergs awk
RLSE St 3 8122 Jul 16 22 11 1996 dx500/tools/xamodipop awk

-pe-r--r--154/50 $234 Jul 16 22 21 1996 dx500 tools/xprefixddx awk
-r--r--r--154/50 2360 Jul 16 22.21 1996 dx500/tools/xraload awk
90% Jul 16 22.21 1996 dx500/z00ls, xtpticomma awk
409 Jul 16 22-21 1996 dx500,zools/xunformat awk
~t--r--r--154/50 6786 Jul 16 22.21 1996 dx5¢C/tools xupdate awk
~rwxrwxr-x154/50 0 Aug 27 18 06 1996 dx500.scripta/
“g--r--r--154/50 864 Jul 31 05 43 1996 dx500/scripts.init
~r--r--r--154/50 14902 Jul 16 22-21 1994 dxSOC 'scripessinit attr
-pe-r--r--154/50 14440 Jul 16 22 21 1996 dx500.scripts.init cosine
11283 Jul 16 22-21 1996 dAxSCC.scripta/iniz dms

371 Jul 16 22 21 1996 dx50C/scripta/inic dsp
4948 Jul 16 22 21 1996 dx5C) scripts/init elx
1015 Jul 16 22 21 1996 dx500 scripts/init edy

732 Jul 17 23 41 1996 dxS00/scripts/init Jeneral
1541 Jul 16 22 11 1996 dx5C5.mcripts/init isocor
18348 Jul 28 22 48 1996 1x500.scripts.init mhe
1272 Jul 16 22 21 1996 dx500.scripts/init mosaic
5048 Jul 16 2221 1996 dx500 seripts:init nadt
1422 Jul 16 22.11 1994 d4xS500 scripts/init pp
7660 Jul 16 22-21 1996 dx503 scripts/init Juipu

470 Jul 16 22 21 1996 dx530/scripts/init schema
2155 Jul 16 22 .21 1995 dxS3C.scripts’/imit thorn
1161 Jul 16 22 21 1996 dx500 scripts,init umich
1243 Jul 16 22-21 1996 dxSCO'scripts/testl

9960 Jul 16 22 21 1396 dx5CC scripts/testi

~r--r--r--154/50
-r--r--r--154/50

-r--r--r--154/50
-r--r--r-~154/50

Sep 16 15:56 1997 listing)} Page 20

sre-r--r--154/50
r--154/50
r--154/50

8342 Jul 16 22 1996
9212 Jul 16 22 19954

Fay L SCTIpTE-test]
11189 Jul 30 20 42 1996

b3

2

scripts/test)
scTipry testd

r--r~-154/50 1678 Jul 16 22 211 1396 scrip 137
-r--r--r--154/50 11832 Jul 16 22 21 199¢ scripts th
-r--r--r--154/50 9971 Jul 18 50 4C 1996 scripts-test”

4168 Jul 18 00 43 (995
t--r--154/%0 5801 Jul 16 22 21 1996
- rwxTwxr-x154/50 0 Jul 31 20 42 1996
LrwxTwxrwx154/50 9 Aug 16 98 54 1396
~rwxrwXr-x154/50 0 Jul 31 20 2C 1996
~rw-rw-r--154/50 7902 Jul 31 19 38 199§
-rw-rw-r--154/50 9886 Jul 31 19 18 199%%

‘mcripts/tesch

scriprs/dsptescl

api.

api iib symbo.iz iink to .ib 3UNCS
api. tncludes

¢ apiincludesAtir h
api/include-Auth h

-rw-rW-r--154/50 9377 Jul Il 19-38 1996 api 1nclude. Caplsp h
~rw-rw-r--154750 45626 Sul 11 19 18 1998 api includesDapasn h
-tw-rw-r--154/50 11328 Jul 18 00 45 1996 ap1 incliude, Dapidu h
-rw-rw-r--154/50 17948 Jul 31 19-18 1994 ‘api-include Dipidu h

-rw-rw-r--154/50
-rw-rw-r--154/50C
-rw-rwW-r--154/50

13587 Jul 31 19 18 1996
1610 Jul J1 19 38 199%
17096 Jul 31 19 38 1994

ap1 inciude
api irclude
ap1 include

~rw-rw-t--154/50 636 Jul 31 19 18 1995 api inciude h
-rw-rw-r--154/50 44313 Jul 131 1938 1335 api inclide Rupper h
-rw-rw-r--154/50 956 Jul 31 1% 18 199 api 1nclude SYNTAXES h

-rw-ra-r--154/50
-r--r--r--154/50
-r--r--r--154/50
sr--r--x--154/50

5985 Jul 31 19 33 1996
6583 Jun 24 02 58 1996
1409 Jul 16 22 2C 1995
3101 Jun 24 02 58 199%

api inciude Syx %
ap: inciude asnlsys h
ap: inciudesds h

capi inciude.ueus h

r--r--r--154/50 813 Jun 24 92 53 1396 ap1 inciudes Istypes R
- rwxrwxr-x154/50 2 Aug S5 05 31 199+ ap:. demc
~r--r--r--154/50 288 Jul 16 13 0 199% ap: lemo.Makefile PC

276 Jul 1% 22 20 1994
286 Jul 16 22 0 1394

ap: demo Make
api demo/Makefi.e SOLARIS

s
¢

305 Jul 16 22 % 1996 Ap1 demo Makef:lie SUN

-r--r--r--154/5C 9359 Jul 16 21 % 1996 api demo/artr <
-r--r--t--154/50 24921 Sul 16 22 (0 1994 api demo z:3nf

154/50 $675 Jul 16 22 7 1395 api demo demc -
~r--r--r--154/50 1860 Jul 16 22 20 1996 ap. demc demc
Sr--r--r--154/50 20799 Jul 14 22 i€ 199% ap1 demo req -
Lrwxrwxrwx154/50 12 Aug 14 08 54 199% T apl demo Maxe symbeiic link c o Maxefile S
- wxTwWxr-x154/50 api k SUNCS

Lowxrwxrwx154/50
-rwxrwxr-x154/50
-rwxraxr-x154/50
-rwxrwxr-x154/50
-r-Xr-xr-x154/50
-fe-r--r--154/50

api l.b SUNCS
api l1b SCLARIS

SYMDOL. " ..me T L. 3TNCS

“map
cmup Axemip
P README

-rwxrwxr-x154/50 0 Aug 17 18 4 1396 ¢

sr--r--r--154/50 679 Jul 16 22 21 1994 4 1m0t :
cr--r--r--1%4/50 402 Feb 27 01 47 1934 tind

Lrwxrwxrwx154/50 21 Aug 27 18 G4 1396 Aua symboiid link T3 i
-TWXrWYr-x154/50 0 Aug 28 il 17 1996 srmp I
-r-xr-xr-x154/50 S66 Jul 16 22 21 1996 ‘stnp Axsmp ‘
~e--r--r--154/50 910 Jul 16 22 21 1995 snmp README '
trwxraxrwx154/50 38 Aug 28 i1 17 1395 snep danoniTir symbol Link T2 damenit s bameritsr bamenitcr

-rwxraxT-x154/5C 0 Aug 27 18 24 199% d18p

sr--r--r--154/50 495 Jul 16 22 21 199% isp REACME

116

117

Sep 26 15:56 1997 listing.3 Page 21
~r--r--r--154/50 365 Jul 16 22:21 1996 dx500/utils/disp/dispCopy.cfy
1rwxrwxrwx154/50 18 Aug 27 18:04 1996 dx500/utils/disp/dispCopy symbolic link to ../../bin/dispCopy
-rwxrwxr-x154/50 0 Aug 27 18:06 1996 dx500/utils/actest/
-r--r--r~~154/50 9434 Aug 5 04:12 1596 dx500/utils/actest/README
-r--r--r--154/50 5853 Aug S 04:12 1996 dx500/utils/actest/actest.in
Lrwxrwxrwx154/50 16 Aug 27 18:06 1996 dxS500/utils/actest/actast symbolic link to /../bin/actast
-r--ve-r--154/50 2534 Feb 26 01:48 1996 dx500/BETA.AGREEMENT
- rwxrwxr-x154/50 0 Aug 16 08:54 1996 rstack/
-rwxrwxr-x154/50 0 Aug 27 17:31 1996 rstack/asn/
“rw-rwer-~154/50 14247 Aug 27 17:31 1996 rstack/asn/STACK.asn
~rw-rw-r--154/50 42956 Aug 27 17:31 1996 rstack/asn/DAP.asn
-rw-rw-r--154/50 14420 Aug 27 17:31 1996 rsctack/asn/CMIP.asn
-yw-rw-r--154/50 10853 Aug 27 17:31 1996 rstack/asn/LDAP.asn
-re-r--r-=154/50 3703 Jun 24 02:57 1996 rstack/asn/acse,asn
-r--r--r--154/50 4212 Jun 24 02:57 1996 rstack/asn/basicAC.asn
-r--r+-r--15%4/50 13639 Jun 24 02:57 1996 rstack/asn/cmip.asn
-r--r--r--154/50 18946 Jun 24 02:57 1996 rstack/asn/dap.asn
-r--154/50 2693 Jun 24 02:57 1996 rstack/asn/dapdsp.asn
~r--154/50 781 Jun 24 02:57 1996 rstack/asn/defs.asn
-r--154/50 7879 Jun 24 02:57 1996 rstack/asn/disp.asn
~r--154/50 3147 Jun 24 02:57 1396 rstack/asn/dop.asn
~r--154/50 4902 Jun 24 02:57 1996 rstack/asn/dsp.aan
-r--r--154/50 1784 Jun 24 02:57 1996 rstack/asn/info.asn
-r--r--r--134/50 10072 Jun 24 02:57 1996 rstack/asn/ldap.asn
~rw-Tw-r--154/50 1754 Aug 21 12:49 1996 rstack/asn/makefile
-r--r--r--154/50 5057 Jun 24 02:57 1996 rstack/asn/pres.asn
-r--r--r--154/50 218% Jun 24 02:57 1996 rstack/asn/rose.asn
~r--r--y~-154/50 €07 Jun 24 02:57 1996 rstack/asn/roseld.asn
-r--r--r--154/50 2517 Jun 24 02:57 1996 rstack/asn/upper.asn
~rwxrwxr-x154/50 0 Aug 27 17:36 1996 rstack/emip/
-r--r--154/50 15317 Jun 24 02:57 1996 rstack/cmip/cm_agent.c
-r--r-~154/50 8451 Jun 24 02:57 1996 rstack/emip/cmip.c
--r--154/50 8581 Jun 24 02:57 1996 rstack/cmip/cmip_mib.c
~r--r--154/50 2124 Jun 24 02:57 1996 rstack/cmip/cmip_mib.h
-r--r-~154/50 1703 Jun 24 02:57 1936 rstack/emip/emipi.c
- --r--154/50 2170 Jun 24 02:57 1996 rstack/cmip/emipr.c
~r--r--r--154/50 17787 Jun 24 02:57 1996 rstack/cmip/dsa_mib.c
-r--r--r--154/50 488 Jun 24 02:57 1996 rstack/cmip/makefile
-rw-tw-r--154/50 95895 Aug 27 17:31 1996 rstack/cmip/CMIP_i.c
-rW-rw-r--154/50 87352 Aug 27 17:31 1996 rstack/cmip/CMIP_r.c
~rw-rw-r~~154/50 36412 Aug 27 17:35 1996 rstack/cmip/em_ agent.o
-ra-rw-r--154/50 35452 Aug 27 17:35 1996 rstack/cmip/cmip_mib.o
-rwerw-r--154/50 34756 Aug 27 17:35 1996 rstack/cmip/cmip.o
-rw-rw-r--154/50 27200 Aug 27 17:35 1996 rstack/cmip/cmipr.o
~rw-rw-r--154/50 94724 Aug 27 17:36 1996 rstack/cmip/CMIP_r.o
~rw-rw-r--154/50 50332 Aug 27 17:36 1996 rstack/cmip/dsa_mib.o
-rw-rw-r-~154/50 25560 Aug 27 17:36 1996 rstack/cmip/cmipi.o
-rw-rw-r~-154/50 102380 Aug 27 17:36 1996 rscack/cmip/CMIP_i.o
-rwxrwxr-x154/50 0 Aug 27 17:34 1996 rstack/x500-€p/
~r--r--r--154/50 379 Jun 24 02:57 1996 rstack/x500-fp/makefile
~rw-rw-r--154/50 39324 Aug 27 17:31 1996 rstack/x500-fp/DapDsp_i.c
rw-rw-r--154/50 217337 Aug 27 17:31 1996 rstack/xS00-fp/Dapasn_i.c
-rw-rw-r--154/50 58551 Aug 27 17:31 1996 rstack/x500-fp/Dispasn_i.c
rw-rw-r--154/50 32413 Aug 27 17:31 1996 rstack/x500-fp/Dopasn_i.c
-rw-rw-r--154/50 73101 Aug 27 17:31 1996 rstack/x500-fp/Dsp_i.c
-rw-rw-r--154/50 10895 Aug 27 17:31 1996 rstack/x500-fp/Info_i.c
Sep 26 15:56 1997 listing.3 Page 22
-rw-rw-r--154/50 916 Aug 27 17:31 1996 rstack/x500-fp/Roseld_i
-rw-rw-r--154/50 48200 Aug 27 17:33 1996 rstack/x500-€fp/DapDsp_i.
-rw-rw-r--154/50 246116 Aug 27 17:34 1996 rstack/x500-fp/Dapasn_i.o
-rw-rw-r--154/50 102508 Aug 27 17:34 1996 rstack/x500-fp/Dsp_i.o
—r4-rw-r--154/50 15156 Aug 27 17:34 1996 rstack/xS00-fp/Info_i.o
-rw-rw-r--154/50 3812 Aug 27 17:34 1996 rstack/x500~fp/Roseld_i.o
-rw-rw-r--154/50 74600 Aug 27 17:34 1996 rstack/x500-fp/Dispasn_i.o
-rw-rw-r--154/50 44512 Aug 27 17:34 1996 rstack/x500-fp/Dopasn_i.o
-rwxrwxr-x154/50 0 Aug 27 17:37 1996 rstack/ac/
57625 Aug 16 09:11 1996 rstack/ac/ac.c
8813 Aug S5 04:12 1996 rstack/ac/ac.h '
8575 Jul 30 20:46 1996 rstack/ac/acdump.c |
32908 Aug 5 04:12 1996 rstack/ac/actest.c i
5353 Aug S 04:12 1996 rstack/ac/actest.in H
9434 Aug 5 04:12 1996 rstack/ac’actest.readms !
~r--r--r--154/50 5132 Jul 19 01:04 1996 rstack/ac/basicAC.asn !
T--r--154/50 456 Aug S 04:12 1996 rstack/ac/makefile !
rw-r--154/50 368 Aug 27 17:36 1996 rstack/ac/Dapasn.h H
5356600 Aug 27 17:36 1996 rstack/ac/ac.o 1
29125 Aug S 04:12 1996 rstack/ac/acadd.c
rw-r--154/50 14198 Aug 27 17:36 1996 rstack/ac/BasicAC.h 1
47684 Aug 27 17:36 1996 rstack/ac/acadd.o
-ru-rw-r-+154/50 26120 Aug 27 17:36 1996 rstack/ac/acdump.o
-rw-rw-r--154/50 51084 Aug 27 17:37 1996 rstack/ac/actest.o
rwxr<xr-x154/50 327680 Aug 27 17:37 1996 rstack/ac/actest
- rWXrwxr-x154/50 0 Aug 27 17:31 1996 rstack/includa/ |
5648 Aug 24 19:43 1996 rstack/include/asnlsys.h {
1286 Jun 24 02:58 1996 rstack/include/bufflib.h 1
3339 Jun 24 02:58 1996 rstack/include/cm.h i
4004 Jun 24 02:58 1996 rstack/include/cmip.h !
861 Jun 24 02:58 1996 rstack/include/commslib.h |
811 Jun 24 02:58 1996 rstack/include/config.h t
1528 Jun 24 02:58 1996 rstack/include/dapi.h H
1341 Jun 24 : 1996 rscack/include/network.h
647 Jun 24 1996 rstack/include/objidv.h
3101 Jun 24 1996 rstack/include/queue.h
828 Jun 24 1996 rstack/include/rfcl277.h
3886 Jun 24 1995 rstack/include/rsinfc.h
48C0 Jun 24 1996 rstack/include/rstack.h
813 Jun 24 1996 rstack/include/rstypes.h
1419 Jun 24 1996 rstack/include/samp.h
566 Jun 24 1996 rstack/include/timer.h
3481 Jul 30 1995 rstack/include/x500.h
2213 Jun 24 1996 rsrtack/inzludesxm.h
27 1996 rstack/include/DapDsp.h
27 1996 rstack,includesDapasn.h
27 1994 rsrack/include/Dispasn.h
27 17:31 1996 rsrack/include/Dopasn.h
7 17:31 1996 rstacksincludesDsp.h
27 17:31 1996 rstack/include/Info.h
27 17:31 1996 rstack/include/Roseld.h
27 17:31 1396 rstack/include/Rupper.h
7 17:31 1994 rstack/include/CMIP.h
27 17:33 1935 rstack,network/
5851 24 02:58 1996 rstack/network/Hsun.c
15110 Jul 30 20:47 1996 rstack/network/Htep.c

Sep 16 15 56 1997 listing) Page .1

-r--r--r--154/50 257 Jun 34 32 58 1994 rstark metwork/makeli.e
Srw-rw-r--154/50 11804 Aug 27 17 13 1996 rstacx netwerk Ktcp o
~rwxrwxr-x154/50 0 Aug 27 17 35 1996 rsrack

“r--r--r--154/50 3666 Jun 24 02 58 1996 ratack

-r--r--r--154/%0 279% Jun 14 22 58 1394 rstacx B
~pe-r--r--154/50 450 Jun 24 02 58 1994 rstack snmp. makefile
-r--r--r--154/50 14102 Jun 24 32 58 1996 rstack,snmp mibsupp <
-r--r--r--154/50 2609 Jun 24 22 58 1394 ratack snmp mibsupp h
-r--r--r--154/50 11459 Jun 34 01 58 1996 rstack.snmp. snmp_agent -
-e--r--r--154/50 24247 Jun 24 20 58 1994 rstack, snmp, sampiib o
-r--r--r--154/50 4489 Jun 24 02 S8 1996 rstack snmp.snmpliib A
cp--r--r--154/50 1161 Jun 24 22 58 1994 rstack snmp, system asni
-r--r--r--154/50 2826 Jul 30 20 47 199k rstack samp udpiib
cr--r--r--154/%0 18715 Jun 24 72 58 1994 rsctack snmp. xS513 asni
Srwerw-r--154/50 1125 Jul 18 00 54 1996 rstack samp mib h
-rw-rw-r--154/50 5049 Jul 18 00 S4 1394 rstack srmp mib ¢
Srw-rwer--154/50 41448 Aug 27 1T 15 199k rstacx snmp. snmpitb o
-rwerwer--154/50 28204 Aug 27 17 35 1994 rstack. snmp mibsupp o
crw-rw-r--1%4/50 10592 Aug 27 17 15 1394 rstack.snmp-udplib o
ctw-rw-r--154/50 22848 Aug 27 17 15 1994 rstack snmp.snmp_ag 2
crwerwer--154/50 9216 Aug 27 17 35 1994 ratack. snmp m_systes o
~rw-rw-r--154/50 10932 Aug 27 17 35 199% ratack snmp.m_dma o
Srworwer--154/50 13540 Aug 27 17 35 1996 rstack samp mib o

- TWXIwXI-x154/5C 0 Aug 27 17 33 1996 rstack stack,
-r-er--r--154,50 500 Jun 24 32 58 1996 rscack. stack makefile
-r--r--r--154,50 21798 Jul 30 20 47 199% rstack/stack rdebug -
-r--r--r--154/50 13671 Jun 24 02 5B 1996 ratack/stack/rpres c
-r--r--r--154/50 18880 Jun 24 02 SB 1996 rstack.stack.rsess c
“k--r--r--154/50 39556 Jun 14 02 S8 1996 rstack stack/rstack c
~re-pe-r--154/50 7047 Jun 24 02 S8 1996 vstack:stack ratack: h
-r--r--r--154/50 17335 Jun 24 02 S8 1996 rstacx/stack/rtran c
-rw-rw-r--154/50 7331 Aug 27 17 31 1996 rstack stack Racse 3
-rw-rw-r--154/50 14976 Aug 27 17 11 1996 rstack. stack;Rpr h
-ew-Tw-r--154/50 4872 Aug 27 17 31 1994 rstack stack’'Rrose A
Srwerwer--154/50 23244 Aug 27 17 11 1996 rstack.stack. Racse_; =
Srwerw-r--154/50 16890 Aug 27 17)1 1994 rstack.stack. Rpres.i
Srw-rw-r--154/50 13354 Aug 27 17 11 1994 rstack. stack/Rrome_1 =
-rw-Tw-r--154/50 58100 Aug 27 17 11 (99 rstack stack.rstack o
Srwerws-r--154/50 43564 Aug 27 17 32 1996 rstack.stack.rpres o
crwerw-r--154/50 37036 Aug 27 17 31 1994 rstack stack/rsess o
-rw-rw-r--154/50 30548 Aug 27 17 32 1996 rstack stack rtran >
-rw-Tw-r--154/50 45704 Aug 17 17 I 1996 rstack stack. rdebug o
-TW-TW-r--154/50 28554 Aug 27 17 12 1994 rstack srack Racse_:
-rw-Tw-r--154/50 14784 Aug 27 17 31 1996 rstack stack,Rros
crwerw-r--154/50 38944 Aug 27 17 }) 1994 ratack. stack Rpre

- rwxXrwxr-x154/50 9 Aug 7 17 31 1996 rsrack.support
erw-rw-r--154/50 43273 Jun 24 92 58 1994 ratack, suppor:.asnprocs 3
~r--T--r--154/50 1775 Jun 24 02 S8 1294 racack support buffl:b :
“r--r--r--154/50 11476 Jun 24 22 58 1996 ratack support commslibd
“r--r--r--154/50 5756 Jun 24 02 58 1996 rstack support config
~re-r--r--154/50 427 Sun 24 02 58 1996 ratack suppor: makef:ile
Sr--r--1--154/50 1375 Jun 24 02 58 1996 rstack support.objidv =
~r--tr--r--154/50 2110 Jun 24 22 58 1996 rstack.support.gueus
-r--r--r--154/50 $913 Jun 24 92 58 1996 rstack suppert. rfcliilT
~r--r--r--154/50 4947 Jun 24 72 58 1996 rsrack support.rsinfo ¢
sr--r--r--154/59 4290 Jun 24 02 $B 1994 rstack support timer °
Sep 26 15:56 1997 listing 3 Page 24

sr--r--r--154/50 13253 Jun 24 22 58 1996 rstack suppert.xm @
-r--r--r--154/50 762 Jun 24 02 S8 1994 rstack support xmalioc -
-rw-rw-r--154750 74448 Aug 27 17 32 1994 rstack. support asnprocs o
-rw-rw-r--154/50 11248 Aug 27 17 32 1996 rstack.support.reinfo -
~Twerw-r--154/50 4336 Aug 27 17 32 1996 rstack support buffi:b s
-rw-rw-r--154/50 5264 Aug 27 17 32 1996 rstack suppor’ timer o
-rw-Tw-r--154/50 3056 Aug 17 17 32 i39% rstack suppers queus >
-rw-rW-r--154/50 16811 Aug 27 17 31 1996 rstack suppart, comms.:ib 3
~rw-TwW-r--154/50 15712 Aug 27 1T o2 ratacKk. suppcrt am o
Srw-rw-r--154/50 2580 Aug 27 17 12 Istack suppar? xmailsc >
-rw-rwer--154/50 T08C Aug 27 17 32 rstack suppors oblidv -
-rw-rw-r--154/50 10432 Aug I7 17 32 rstack support rfziitT
“rw-rw-r--154/50 12%1h Aug 2 32 rstack supper” config -
S rwxrwxr-x154:50 3 Aug 2 15 rstack |iap
Sr--r--r--154/50 88062 Jun 2 1) rstack ldap. ldap :
Sr--r--r--154/50 346 Jun 2 58 rstacx ldap mak
crwerw-r--154750 0 15500 Aug T 1T 31 1996 rstace ldap LOAP !
-rw-Tw-Y--154750 48480 Aug 27 17 31 (994 rstack ldap LDAP_. -
crw-rw-r--154/50 156428 Aug 27 7 15 1994 rstacx .dap idap o
Srw-tw-r--154/50 50236 Aug 27 17 35 1996 rstacx

-rwxrwxr-x154/50 27 17 13 i99% rsrack

“re-r--r--1%4/5C 19 47 139~ rsza-k

“r--r--r--154/50 20 47 199% rstack

-r--r--1--154/50 22 58 1994 rstack

~r--r--T--154/50 72 58 1994 rstanx

sr--reer--164/50 047 1994 rsrack

Sr--r--r--154/50 32 58 1394 rstacx

-r--r--r--154/50 12 58 1996 rstacx

-rwerw-r--154/50 17 1) 1995 rsuack

~rw-rw-r--154/50 1Y 33 1996 rstacx

-rw-rwer--154/50 1733 1394 rzrack

~rw-rw-r--154/50 1" ; rstack

“rwerW-r--154/50 e razacx

“rw-rw-r--154/50 7 rsTax

r--c--r--154/50 R rstacw

- rwxrwxr-x154:50 17 1

-rw-rw-r--154,50 LToar

Swerwer--154/50 173

~ewerw-r--154/50
Srwerwer--154:50
Srw-ra-r--154/56
-rw-rw-r--1545C
-rwerw-r--154.50
cra-twor--154/50
Srw-rwer--154,39

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of informétion systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent information systems

technologies.

